تولید ناپیوسته لیپید با استفاده از مخمر مولد لیپید Rhodosporidium diobovatum و محاسبه خصوصیات فیزیکی بیودیزل تولیدی با استفاده از پروفایل اسیدهای چرب

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه مهندسی مکانیزاسیون کشاورزی و بیوسیستم، دانشکده کشاورزی، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران

چکیده

در این پژوهش، رشد، تولید لیپید و راندمان مصرف منبع کربن به وسیله مخمر مولد لیپید Rhodosporidium diobovatum در محیط کشت با نیتروژن محدود با استفاده از دکستروز (217 و 434 میلی‌مولار) و گلیسرول به عنوان منابع کربن مورد ارزیابی قرار گرفت. هم‌چنین مشخصات فیزیکی بیودیزل حاصل از لیپید تولیدی با دیگر انواع بیودیزل، سوخت دیزل و استانداردهای معتبر مقایسه و تجزیه و تحلیل گردید. محیط‌های کشت حاوی دکستروز و گلیسرول بیوماس تقریباً یکسانی تولید کردند؛ اما پس از 5 روز محیط کشت حاوی 434 میلی‌مولار دکستروز محتوای لیپید بیشتری (حدود 49 درصد از وزن خشک سلولی) نسبت به دیگر منابع تولید نمود. ترکیبات اسیدهای چرب تولیدی توسط R. diobovtum در غلظت‌های متفاوت گلوکز و گلیسرول به طور عمده شامل اسید پالمیتیک (C16:0)، اسید اولئیک (C18:1) و اسید لینولئیک (C18:2) بودند؛ همچنین با توجه به ترکیبات اسیدهای چرب موجود در لیپید تولیدی توسط مخمر مولد لیپید، خصوصیات فیزیکی سوخت زیستی حاصل از آن شامل ویسکوزیته، وزن مخصوص، نقطه ابری، عدد ستان، عدد یدی و ارزش حرارتی بیشینه همگی در محدوده استانداردهای بین‌المللی قرار داشته و مشابهت آن‌ها با دیگر منابع تولید بیودیزل مانند دانه‌های روغنی و چربی‌های حیوانی، قابلیت بالای این نوع مخمر برای تولید سوخت و روغن مغذی در مقیاس‌های تجاری را نوید می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Batch lipid synthesis by the oleaginous yeast, Rhodosporidium diobovatum, and physical properties estimation of produced biodiesel based on fatty acid profiles

نویسنده [English]

  • N. Nasirian
Department of Agricultural Mechanization and Biosystem Engineering, Faculty of Agriculture, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
  1. Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., and Mekhilef, S. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16:2070-2093.
  2. Beopoulus, A., Nicaud, J., Gaillardin, C. 2011. An overview of lipid metabolism in yeasts and its impact on biotechnological process. Applied Microbiology and Biotechnology, 90:1193-1206.
  3. Bligh, E.G., and Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37: 911–917.
  4. Canakci, M., and Sanli, H. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology and Biotechnology, 35:431-441.
  5. Freitas, C., Parriera, T.M., Roseiro, J., Reis, A., and Da Silva, T.L. 2014. Selecting low-cost carbon sources for carotenoid and lipid production by the pink yeast Rhodosporidium toruloides NCYC 921 using flow cytometry. Bioresource Technology, 158: 355-359.
  6. Galafassi, S., Cucchetti, D., Pizza, F., Franzosi, Z., Bianchi, D., and Compagno, C. 2012. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresource Technology, 111: 398-403.
  7. Kent Hoekman, S., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M. 2012. Review of biodiesel composition, properties, and specification. Renewable and Sustainable Energy Reviews, 16: 143-169.
  8. Knothe, G., Matheaus, A.C., and Ryan, T.W. 2003. Cetane number of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel, 82: 971-975.
  9. Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86: 1059-1070.
  10. Knothe, G. 2007. Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 88: 669-677.
  11. Krisnangkura, K. 1986. A simple method for estimation of cetane index of vegetable oils methyl esters. Journal of American oil chemists’ society, 63 (4):  552-553.
  12. Li, Q., Du, W., and Liu, D. 2008. Perspective of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80: 749-756.
  13. Liang, M., and Jian, J. 2013. Advancing oleaginous microorganism to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52: 395-408.
  14. Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34: 1-5.
  15. Munch, G., Sestric, R., Sparling, R., Levin, D.B., and Cicek, N. 2015. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum, from biodiesel-derived waste glycerol. Bioresource Technology, 185: 49-55.
  16. Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Periera, S.A., Druzian, J.I., De Souza, C.O., Vich, D.V., De Carvalho, G.C., and Nascimento, M.A. 2013. Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. Bioenergy Research, 6: 1-13.
  17. Nasirian, N., Almassi, M., Minaei, S., and Widmann, R., 2011. Development of a method for biohydrogen production from wheat straw by dark fermentation. International Journal of Hydrogen Energy, 36: 411-420.
  18. Ramos, M.J., Fernandez, C.M., Casas, A., Rodriguez, L., and Perez, A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100: 261-268.
  19. Renewable Energy Policy Network for the 21st Century (2015). Annual Reporting on Renewables. http://www.ren21.net/status-of-renewables/global-status-report. Html. (access June 2016).  
  20. Saeng, C., Cheirslip, B., Suksaroge, T.T., and Bourtoom, T. 2011. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Bioresource Technology, 46: 210-218.
  21. Schneider, T., Graeff-Honninger, S., French, W.T., Hernandez, R. Merkt, N., Claupein. W., Hetrick, M., and Pham P. 2013. Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents. Energy, 61: 34-43.
  22. Sestric, R., Munch, G., Cicek, N., Sparling, R., and Levin, D.B. 2014. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology, 164: 41-46.
  23. Sitepu, I.R., Garay, L.A., Sesteric, R., Levin, D.B., Block, D.E., German, J.B., and Boundy-Mills, K.L. 2014. Oleaginous yeast for biodiesel: Current and future trends in biology and production. Biotechnology Advances, 32(7): 1336-1360.
  24. Sung, M., Yeong, H.S., Shin, H., and Jong-In., H. 2014. Biodiesel production from yeast Cryptococcus sp. Using Jerusalem artichoke. Bioresource Technology, 155: 77-83.
  25. Tanimura, A., Takashima, M., Sugita, T., Endoh, R., Kikukawa, M. Yamaguchi, S., Sakuradani, E., Ogawa, J., and Shima, J. 2014. Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technology, 153: 230-235.
  26. Thiru, M., Sankh. S., and Rangaswamy V. 2011. Process for biodiesel production from Cryptococcus curvatus. Bioresource Technology, 102: 10436-10440.
  27. Xu, J., Zhao, X., Wang, W., Du, W., and Liu, D. 2012. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65: 30-36.
  28. Zhang, Z., Zhang, X., and Tan, T. 2014. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157: 149-153.