گزینش و شناسایی جدایه‌های باکتریایی حل‌کننده فسفات ازخاک ریزوسفری ذرت و سویا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

2 استادیارگروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

3 دانشیار گروه علوم خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

باکتری­های خاک، کارکرد ویژه ای در چرخه فسفر خاک دارند؛ آنها از راه حل­کردن فسفر و افزایش دسترسی گیاهان به فسفر می­ توانند مایه افزایش رشد گیاه شوند. در این بررسی باکتری­های حل کننده فسفات از ریزوسفر ذرت و سویا جداسازی و توانایی آزادسازی فسفر از تری­کلسیم فسفات و آلومینیوم فسفات در محیط­های بافری و نابافری شده با بهره گیری منابع گوناگونی از کربن و نیتروژن بررسی شد. روی همرفته، 175 جدایه خالص سازی و پس از آزمون های نخستین بر روی محیط جامد  National Botanical Research Institute Phosphorus (NBRIP) ، 40 جدایه از آنها برای سنجش توان آزادسازی فسفر در محیط مایع گزینش شدند. سنجش توان آزادسازی فسفر در محیط مایع نشان داد که توانمندی جدایه ها در آزادسازی فسفر از تری­کلسیم فسفات بسیار بیش تر از آلومینیوم فسفات بود. گلوکز و سولفات آمونیوم بهترین منابع کربن و نیتروژن باکتری ها برای آزادسازی فسفر میباشد و همچنین اندازه آزادسازی فسفر در شرایط بافر شده بسیار کاهش یافت. جدایه های گزینش شده توان آزادسازی فسفر بیش تری را در محیط NBRIP در برابر محیط پایکووسکی از خود نشان دادند. بر پایه یافته های بهدست آمده از توالی خوانی جدایه­های برتر از نظر توان انحلال فسفات نامحلول، هفت جدایه متعلق به جنس Enterobacter و یک جدایه متعلق به جنس Pantoea بود. نتایج به دست آمده نشان داد که توان انحلال فسفر در جدایه­های مورد بررسی به منبع فسفر، کربن و نیتروژن مورد استفاده و به خصوص به شرایط بافری محیط کشت بستگی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Screening and Identification of Phosphate Solubilizing Bacterial Isolates from Rhizosphere Soil of Maize and Soybean

نویسندگان [English]

  • A Ardeshiri Lajimi 1
  • R Ghorbani Nasrabadi 2
  • M Barani Motlagh 3
  • S A Movahedi 3
Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W., and Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34:33–41.
2. Chung, H., Park, M, Madhaiyan, M., Seshadri, S., Song, J., Cho, H., and Sa, T. 2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37:1970–1974.
3. Duponnois, R., Colombet, A., Hien, V., and Thioulouse, J. 2005. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biology and Biochemistry, 37: 1460-1468.
4. Fallah, A. 2006. Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from North of Iran. In: 18th Congress of Soil Science, Philadelphia, p. 19283.
5. Farhat, M.B., Farhat, A., Bejar, W., Kammoun, R., Bouchaala, K., Fourati, A., Antoun, H., Bejar, S., and Chouayekh, H. 2009. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa. Archives of Microbiology, 191:815–824.
6. Gyaneshwar P, Naresh K.G., Parekh, L.J. 1998. Effect of buffering on the phosphate solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology, 14:669–673.
7. Karunai Selvi, B., and Ravindran, A.D. 2012. Influence of different carbon and nitrogen source on insoluble inorganic phosphate solubilizatuon by Bacillus Subtilis. International Journal of Advanced Biological and Biomedical Research 2(3): 441-445.
8. Khan, M.S., Ziadi, A., and Wani, P.A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture. Agronomy for Sustainable Development, 27 :29–43.
9. Khan, M.S., Zaidi, A., Ahemad, M., Oves, M., and Wani, P.A. 2010. Plant growth promotion by phosphate solubilizing fungi- current perspective. Archives of Agronomy and Soil Science, 56:73–98.
10. Kim, K.Y., Jordan, D., and McDonald, G.A. 1998. Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, 30: 995–1003.
11. Leyval, C., and Barthelin, J. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: infuence on P, K, Mg and Fe mobilization from mineral and plant growth. Plant and Soil, 17: 103-110.
12. Merbach, W., Deubel, A., Gransee, A., and Klamroth, A. 2010. Phosphorus solubilization in the rhizosphere and its possible importance to determine phosphate plant availability in soil. A review with main emphasis on German results. Archives of Agronomy and Soil Science. 56: 119–138.
13. Mihailescu, E., Murphy, P.N.C., Ryan, W., and Casey, I.A. 2015. Phosphorus balance and use efficiency on 21 intensive grass-based dairy farms in the South of Ireland. JAS, 153(3): 520–537.
14. Nautiyal, C.S .1999. An efficient microbiological growth medium for screening of phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170: 265–270.
15. Nazir, R., Warmink, J., Boersma, H., and van Elsas, J.D. 2009. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiology Ecology, 71:169-185.
16. Park, K.H., Lee, O.M., Jung, H.I., Jeong, J.H., Jeon, Y.D., Hwang, D.Y., Lee, C.Y., and Son, H.J. 2010. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Applied Microbiology and Biotechnology, 86:947–955.
17. Pikovskaya, R. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17:362–370
18. Puente, M.E., Li, C.Y., and Bashan, Y. 2009. Rock-degrading endophytic bacteria in cacti. Environmental and Experimental Botany, 66: 389–401.
19. Richardson, A.E. 2007. Making microorganisms mobilize soil phosphorus. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in plant and soil sciences, vol 102. Springer, Netherlands, pp 85–90.
20. Sharan, A., Shikha, D.N.S., and Gaur, R. 2008. Xanthomonas campestris, a novel stress tolerant, phosphate solubilizing bacterial strain from saline-alkali soils. World Journal of Microbiology and Biotechnology, 24:753-759.
21. Song, O.R., Lee, S.J., Lee, Y.S., Lee, S.C., Kim, K.K., and Choi, Y.L. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 39: 151–156.
22. Sperber, J.I. 1958. Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research, 9:778–781.
23. Stefanoni Rubio, P.J., Godoy, M.S., Della Mo´nica, I.F., Pettinari, M.J., Godeas, A.M., and Scervino, J.M. 2016. Carbon and nitrogen sources influence tricalcium phosphate solubilization and extracellular phosphatase activity by Talaromyces flavus. Current Microbiology, 72: 41–47.
24. Sulbaran, M., Pe´rez, E., Ball, M.M., Yarza´bal, L.A., and Bahsas, A. 2009. Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans mmb051 isolated from an iron-rich soil in south eastern Venezuela (Bolıvar state). Current Microbiology, 58:378–383.
25. Vinopal, R.T., Romano, A.H. 2000. Carbohydrate synthesis and metabolism. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1, 2nd edn. Academic, San Diego, pp 647–668.
26. Whitelaw, M. 2000. Growth promotion of plant inoculated with phosphate-solubilizing fungi. Advances in Agronomy, 69:99–151.
27. Yadav, H., Gothwal, R.K., Nigam, V.K., Sinha-Roy, S., and Ghosh, P. 2013. Optimization of culture conditions for phosphate solubilization by a thermo-tolerant phosphate-solubilizing bacteriumBrevibacillus sp. BISR-HY65 isolated from phosphate mines. International Society of Biocatalysis and Agricultural Biotechnology, 2 (3): 217-225.