بررسی انرژی مصرفی و زمان خشک شدن پسته در یک خشک کن ترکیبی خورشیدی- مادون قرمز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی مکانیک بیو سیستم، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه مهندسی مکانیک بیو سیستم، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در این مطالعه انرژی مصرفی و زمان خشک­ شدن پسته در یک خشک­کن ترکیبی خورشیدی-مادون قرمز، مورد بررسی قرار گرفته است. آزمایش­ها در یک طرح کاملا تصادفی در قالب فاکتوریل و با سه تکرارانجام شدند. تأثیر فاکتورهای دمای هوای خشک­کننده در سه سطح 45، 55 و 65 درجه سلسیوس و شدت تابش مادون قرمز در سه سطح صفر، 07/0 و 14/0 وات بر سانتی­متر­مربع بر صفات­ مجموع انرژی مصرفی، سهم انرژی خورشیدی و زمان خشک شدن، در هر یک از تیمارهای آزمایش محاسبه و مقایسه گردیدند. نتایج نشان داد که افزایش شدت مادون قرمز مجموع انرژی مصرفی را به طور متوسط 36 درصد کاهش می­دهد. همچنین کمترین مقدار مجموع انرژی مصرفی در تیمار با دمای هوای خشک­کننده­ 55 درجه سلسیوس و با شدت مادون قرمز 14/0 وات بر سانتی­مترمربع بهدست آمد. کمترین زمان خشک شدن در تیمار با دمای هوای خشک­کننده 65 درجه سلسیوس و شدت مادون قرمز 14/0 وات بر سانتی متر مربع واقع گردید. بهطور کلی افزایش دمای هوای خشک­کننده از 45 به 65 درجه سلسیوس، زمان خشک شدن پسته را 30 درصد و افزایش، و شدت مادون قرمز را از صفر به 14/0 وات بر سانتی­مترمربع، و این زمان را 50 درصد کاهش داد. با توجه به سهم انرژی خورشیدی و کمتر بودن مجموع انرژی مصرفی، تیمار 55 درجه سلسیوس با شدت مادون قرمز 14/0 وات بر سانتی متر مربع توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Energy Consumption and Pistachio Drying Time in a Hybrid Solar-Infrared Drier

نویسندگان [English]

  • M Rekabi 1
  • M. H Abbaspour Fard 2
  • H Mortezapour 3
  1. Abrishami, M. 1994. Persian Pistachio: A Comprehensive History. Iran University Press. Tehran, p:669 (In Persian.(
  2. Afzal, T., Abe, T., Hikida, Y., 1999. Energy and quality aspects during combined FIR-convection drying of barley. Journal of Food Engineering, 42:177-182.
  3. Aghkhani, M.H., Abasspour-Fard, M.H., Bayati, M.R., Mortezapour, H., Saedi, S.I., and Moghimi, A. 2013. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber. Journal of Agricultural Machinery 3: 92-103. (In Persian with English abstract).
  4. Akhondi, E., Kazemi, A., and Maghsoodi, V. 2011. Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L) stigmas in an infrared dryer. Scientia Iranica, 18:1397-1401.
  5. Amiri Chayjan, R., and Alaei, B. 2016. Comparison of short and medium infrared radiation on drying parameters of peach slices under vacuum conditions. JFST 13(58):107-116. (In Persian with English abstract).
    1. Anonymous, 2012. http://faostat.fao.org/site/339/default.aspx.
    2. ASABE, 2005. Standard for measurement of moisture in grain and seed. Agricultural Engineers Yearbook.
    3. 8- Duffie, J.A., and Beckman, W.A., 2013. Solar engineering of thermal processes. John Wiley and Sons.
    4. Gazor, H.R., and Minaei, S., 2005. Influence of temperature and air velocity on drying time and quality parameters of pistachio (Pistacia vera L.). Drying Technology, 23:2463-2475.
    5. Ghazanfari, A., Tabil Jr, L., and Sokhansanj, S. 2003. Evaluating a solar dryer for in-shell drying of split pistachio nuts. Drying Technology, 21:1357-1368.
    6. Kashaninejad, M., and Tabil, L. 2009. Resistance of bulk pistachio nuts (Ohadi variety) to airflow. Journal of Food Engineering, 90:104-109.
    7. Kashaninejad, M., Mortazavi, A., Safekordi, A., and Tabil, L. 2007. Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78:98-108.
    8. Kouchakzadeh, A., and Haghighi, K. 2011. Modeling of vacuum-infrared drying of pistachios. Agricultural Engineering International: CIGR Journal, 13: 1-6.
    9. Kouchakzadeh, A., and Tavakoli, T. 2009. The effect of moisture and temperature on thermophysical properties of Iranian pistachios. World Applied Sciences Journal, 7:1552-1558.
    10. Meeso, N., Nathakaranakule, A., Midhiyonon, T., and Soponronnarit S. 2004. Influence of FIR irridiation on paddy moisture reduction and milling quality after fluidized bed drying. Journal of Food Engineering, 65: 293-301.
    11. Midilli, A., and Kucuk, H. 2003. Energy and exergy analyses of solar drying process of pistachio. Energy, 28: 539-556.
    12. Midilli, A. 2001. Determination of pistachio drying behaviour and conditions in a solar drying system. International Journal of Energy Research, 25:715-725.
    13. Mokhtarian, M., Tavakolipour, H., and Kalbasi Ashtari, A. 2016. The Effect of Solar Drying Method in Air Recycle Mode Comparing with Traditional Method (Exposing to Direct Sunlight) on the Quality Properties of Pistachio Nut. Iranian Journal of Nutrition Sciences and Food Technology, 10 (4):93-102.
    14. Mortezapour, H., Ghobadian, B., Minaei, S., and Khoshtaghaza, M.H. 2012. Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Drying Technology, 30:560-566.
    15. Mousavi Bayegi, S.F., Farahmand, A., Taghizadeh, M., and Ziaforoughi, M.A. 2016. Modeling on hot air and infrared thin layers drying of persimmon slices. Iranian Journal Of Food Science and Technology, 13(53):161-171. (In Persian with English abstract).
    16. Nowak, D., and Lewicki, P.P. 2004. Infrared drying of apple slices. Innovative Food Science and Emerging Technologies, 5: 353-360.
    17. 22- Pal, U., Khan, M., and Mohanty, S. 2008. Heat pump drying of green sweet pepper. Drying Technology, 26: 1584-1590.
    18. Pathare, P.B., and Sharma, G., 2006. Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosystems Engineering, 93:285-291.
    19. Ruiz Celma, A., Cuadros, F., and López-Rodríguez, F. 2009. Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing, 87: 282-291.
    20. Ruiz Celma, A., Rojas, S., and Lopez-Rodriguez, F. 2008. Mathematical modelling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing: Process Intensification, 47: 1810-1818.
    21. Salehi, F., Kashaninejad, M., Mahoonak, A.R., and Ziaiifar, A.M. 2016. Drying of Button Mushroom by Infrared-Hot Air System. Iranian Journal of Food Science and Technology, 13(59): 151-159. (In Persian with English abstract).
    22. Sharma, G., Verma, R., and Pathare, P. 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71: 282-286.
    23. Shi, J., Pan, Z., McHugh, T.H., Wood, D., Hirschberg, E., and Olson, D. 2008. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Science and Technology, 41: 1962-1972.
    24. Supmoon, N., and Noomhorm, A. 2013. Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technology, 31: 24-31.
    25. Tavakolipour, H., and Mokhtarian, M. 2012. Nural network approches for prediction of pistachio drying kinetics. International Journal of Food Engineering, 8(3). DOI: https://doi.org/10.1515/1556-3758.2481,
    26. Tavakolipour, H. 2011. Drying kinetics of pistachio nuts (Pistacia vera L.). World Applied Sciences Journal, 12:1639-1646.
    27. Tavakolipour, H., Kalbasi Ashtari, A., Bassiri, A.R. 2008. Effect of drying parameters on quality indicators of Damghan pistachio nuts (Pistacia vera L.) and determining effective diffusion coefficient in optimum conditions. Iranian Journal of Food Science and Technology, 5(4):47-56 (In Persian with English abstract).
    28. Toğrul, H. 2006. Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77: 610-619.
    29. Wang, J., and Sheng, K. 2006. Far-infrared and microwave drying of peach. LWT-Food Science and Technology, 39: 247-255.