تاثیر کمپوست قارچ مصرفی و بیوچار باگاس نیشکر بر قابلیت استفاده و جزءبندی فسفر معدنی در یک خاک آهکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران

2 دانشیار گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران

3 استادیار گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران

چکیده

مطالعه انکوباسیون به منظور بررسی اثر کمپوست قارچ مصرفی(SMC) و بیوچار باگاس نیشکر(B) بر فراهمی واجزاء مختلف فسفر معدنی در یک خاک آهکی انجام گرفت. تیمار­ها شامل B1 و B2 (معادل15 و 30 تن در هکتار)، SMC1، SMC2 (معادل20 و 40 تن در هکتار) و شاهد(C) بودند. فسفر قابل جذب و محلول در آب، pH و شکل­های فسفر معدنی شامل دی­کلسیم ­فسفات(Ca2-P)، اکتا­کلسیم فسفات(Ca8-P)، فسفات­ آلومینیم(Al-P)، فسفات آهن(Fe-P)، فسفر­محبوس (OC-P) و آپاتیت (Ca10-P) در زمان­های 14، 60 و 120 روز اندازه­گیری و از لحاظ آماری مقایسه شدند. نتایج نشان داد که فسفر­ قابل جذب از 8/8 میلی­گرم بر کیلوگرم در شاهد به 8/17، 8/28 و 4/12 به ترتیب در SMC1، SMC2 وB2 ­ به طور معنی­داری افزایش یافت(p<0.01) که با گذشت زمان در B2 روند افزایشی بود؛ ولی در SMC2 بیشترین مقدار در زمان 60 روز مشاهده شد. فسفر محلول در آب نیز از 1/2 میلی­گرم بر کیلوگرم در شاهد به 8/2 و 7/2 به ترتیب در SMC2 و B2 افزایش معنی­داری نشان داد و با گذشت زمان در SMC2 روند افزایشی بود. تیمار SMC2 به طور معنی­داری pH خاک را از 2/7 در شاهد به 1/7 کاهش داد. با گذشت زمان pH در همه تیمارها افزایش نشان­ داد. با گذشت زمان، SMC1 و SMC2 شکل Ca2-P را در مقایسه با شاهد به طور معنی­دار افزایش دادند. همچنین، شکل­های Ca8-P و Al-P از 158 و 27 میلی­گرم بر کیلوگرم در شاهد به ترتیب به 186 و 35 در SMC2 افزایش یافت(p<0.01). این نتایج بر اثر گذاری بیشتر SMC در تغییرات فسفر معدنی در مقایسه با بیوچار تاکید دارد؛ اگرچه مصرف بیوچار در سطوح بالا نیز مثبت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of spent mushroom compost (SMC) and sugar cane bagasse biochar on availability and fractions of inorganic phosphorus in a calcareous soil

نویسندگان [English]

  • A. Fathi Gerdelidani 1
  • H. Mirseyed Hosseini 2
  • M. Farahbakhsh 3
چکیده [English]

Introduction Phosphorus deficiency is one of the major problems of calcareous soils in Iran and based on current statistics more than 70 % of all soils in Iran are under critical P levels of 15 mg kg-1 (51). Previous research results show that application of organic matter increases P availability (46) and changes the P distribution between various forms in calcareous soils.The aim of this study was to evaluate the effects of different levels of spent mushroom compost and sugar cane bagasse biochar as agricultural by products or crop residues on availability and phosphorus fractions in a calcareous soil from Karaj (Alborz provience, Iran).
Materials and Methods The soil for the experiment was obtained from 0-30 cm depth of Agriculture Faculty farm of Tehran University at Karaj. Some physical and chemical properties were determined using standard methods (table 1). The spent mushroom compost (SMC) was from Malard mushroom factory and Sugarcane bagasse was from a farm in Khozestan. The Biochar (B) was prepared from the raw material heated to 500 degree celcius inside furnace for 3 hours. Some basic properties of SMC and biochar were also determined (table 2). The experiment was conducted in a completely Randomized design with 5 treatments, and 3 time periods with three replications of each treatment. Treatments included 2 biochar levels B1, B2 (15 and 30 Mg ha-1 respectively), 2 spent mushroom compost levels SMC1, SMC2 (20 and 40 Mg ha-1 respectively) and the control treatment (C). For each treatment, 300 grams of air dried soil was used in small pots and after application of materials and mixing they were moist to field capacity and kept inside an incubator at 28-29 ˚C for a period of 120 days. At 14, 60 and 120 days soils were sampled for analysis (by eliminating the pots). Soil properties such as pH, available P, water soluble P and various inorganic P fractions (23) were determined in soil samples. Statistical analysis of the data was done using SAS software and mean comparison using LSD method was also performed.
Results and Discussion Results showed that the available P in the control increased significantly (p<0.01) from 8.8 mg kg-1 of soil to 17.8, 28.8, and 12.8 mg kg-1 of soil in the SMC1, SMC2, and B2 respectively, which had an increasing trend with time in B2, but in the SMC2 it was highest on 60 days. This can be related to higher microbial activity after application of organic materials and release of P after organic matter decomposition (22). The water soluble P also increased from 2.1 mg kg-1 in the control to 2.8 and 2.7 mg kg-1 in the SMC2 and B2 respectively, which showed an increasing trend over time for SMC2 (p<0.01). In the SMC treatments, part of the P content is in inorganic water soluble form and also in the biochar treatments some ash containing P soluble salts may be the source of increase in water soluble P content. The Ca2-P form in the control was increased from 5.1 mg kg-1 of soil to 11.1 and 16.2 mg kg-1 of soil in the SMC1 and SMC2 respectively, which had an increasing trend with time(p<0.01). During 120 days of incubation, the Ca8-P, and Al-P forms were also increased from 158 and 27 mg kg-1 of soil in the control to 186 and 35 mg kg-1 of soil in the SMC2 treatment (p<0.01). The distribution pattern of P fractions after application of SMC and Biochar was different and it changed with the level of the applied material.
Conclusions: Based on the results of this experiment application of organic materials of different nature such as spent mushroom compost and sugarcane bagasse biochar to calcareous soils can affect the availability and various forms of phosphorus to the extent that it should be considered as a measure to improve P availability conditions.

کلیدواژه‌ها [English]

  • Spent mushroom compost (SMC)
  • Bagasse biochar
  • Available P
  • Inorganic P fractions
Abolfazli, F., Forghani, A., and Norouzi, M. 2012. Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. Journal of Soil Science and Plant Nutrition, 12(2): 349-362.
2.    Adhami, A., and Maftoon, M. 1384. The effect of organic matter on availability and mineral forms of phosphorus at field capacity and flooding conditions. 9th Congress of Soil Science of Iran. 516-517. (In Persian)
3.    Al-Abbas, A.H., and Barber, S.A. 1964. A soil test for phosphorus based upon fractionation of soil phosphorus: 1. Correlation of soil phosphorus fractions with plant-available phosphorus. Soil Science Society of America Journal, 28(2): 218-221.
4.    Banik, S., and Dey, B.K. 1982. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil, 69(3): 353-364.
5.    Borggaard, O.K., Jdrgensen, S.S., Moberg, J.P., and Raben‐Lange, B. 1990. Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. Journal of Soil Science, 41(3): 443-449.
6.    Buchanan, M.A., and Gliessman, S.R. 1990. The influence of conventional and compost fertilization on phosphorus use efficiency by broccoli in a phosphorus deficient soil. American Journal of Alternative Agriculture, 5(01): 38-46.
7.    Chapman, H.D. 1965. Cation exchange capacity. In Black, C.A., Evans, D.D., White, L.J., Ensminger, L.E., and Clark, F.E. (eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI. pp: 891–901.
8.    Cebula, J., Pelczar, J., Loska, K., and Widziewicz, K. 2013. The effect of Spent Mushroom Substrate field storage conditions on its leachate composition. Inżynieria i Ochrona Środowiska, 16(1): 93-102.
9.    Ch’ng, H.Y., Ahmed, O.H., and Majid, N.M.A. 2014. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal, 2014.
10.  Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B., and Hay, A.G. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102 (19): 8877-8884.
11.  Cole, C., and Olsen, S.R. 1959. Phosphorus solubility in calcareous soils: 1. Dicalcium phosphate activities in equilibrium solutions. Soil Science Society of America Journal, 23(2): 116-118.
12.  Erich, M.S., Fitzgerald, C.B., and Porter, G.A. 2002. The effect of organic amendments on phosphorus chemistry in a potato cropping system. Agriculture, Ecosystems and Environment, 88(1): 79-88.
13.  Farrell, M., Macdonald, L.M., Butler, G., Chirino-Valle, I., and Condron, L.M. 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and fertility of soils, 50(1): 169-178.
14.  Farrell, M., Rangott, G., and Krull, E. 2013. Difficulties in using soil-based methods to assess plant availability of potentially toxic elements in biochars and their feedstocks. Journal of Hazardous Materials, 250: 29-36.
15.  Fasidi, I.O. 1996. Studies on Volvariella esculenta (Mass) Singer: cultivation on agricultural wastes and proximate composition of stored mushrooms. Food Chemistry, 55(2), 161-163.
16.  Gaskin J.W., Speir R.A., Harris K., Das K.C., Lee R.D., Morris L.A., Fisher D.S. 2010. Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient Status, and Yield. Agronomy Journal, 102:623-633. DOI: 10.2134/agronj2009.0083.
17.  Gee, G.W., and Bauder, J.W. 1986. Particle- size analysis. In Klute, A. (ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 383-411.
18.  Giusquiani, P.L., Marucchini, C., and Businelli, M. 1988. Chemical properties of soils amended with compost of urban waste. Plant and Soil, 109(1): 73-78.
19.  Hosseinpur, A.R., Kiani, S., and Halvaei, M. 2012. Impact of municipal compost on soil phosphorus availability and mineral phosphorus fractions in some calcareous soils. Environmental Earth Sciences, 67(1): 91-96.
20.  Hunt, J.F., Ohno, T., He, Z., Honeycutt, C.W., and Dail, D.B. 2007. Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biology and Fertility of Soils, 44(2): 277-288.
21.  Inskeep, W.P., and Silvertooth, J.C. 1988. Inhibition of hydroxyapatite precipitation in the presence of fulvic, humic, and tannic acids. Soil Science Society of America Journal, 52(4), 941-946.
22.  Iyamuremye, F., and Dick, R.P. 1996. Organic amendments and phosphorus sorption. Advances in Agronomy, 56: 139-185.
23.  Jiang, B.F., and Gu, Y.C. 1989. A suggested fractionation scheme for inorganic phosphorus in calcareous soils. Fertilizer Research, 20: 159-165.
24.  Jordan, S.N., Mullen, G.J., and Murphy, M.C. 2008. Composition variability of spent mushroom compost in Ireland. Bioresource Technology, 99(2): 411-418.
25.  Jones, B.E., Haynes, R.J., and Phillips, I.R. 2010. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. Journal of Environmental Management, 91(11): 2281-2288.
26.  Kuo, S. 1996. Phosphorus. In D. L. Sparks (ed.), Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. Pp: 869-919.
27.  Lambers, H., Raven, J.A., Shaver, G.R., and Smith, S.E. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23: 95–103.
28.  Laird, D., Fleming, P., Wang, B., Horton, R., and Karlen, D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3): 436-442.
29.  29-‌ Lehmann J., Czimnik C., Laird B., and Sohi, S. 2009. Biochar for environmental management: science and technology. London: Earthscan, pp: 183-264.
30.  Lentz, R.D., and Ippolito, J.A. 2012. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033-1043.
31.  McLaughlin, M.J., Alston, A.M., and Martin, J.K. 1988. Phosphorus cycling in wheat pasture rotations. I. The source of phosphorus taken up by wheat. Soil Research, 26(2), 323-331.
32.  Medina, E., Paredes, C., Pérez-Murcia, M.D., Bustamante, M.A., and Moral, R. 2009. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology, 100(18): 4227-4232.
33.  Murphy, J., and Riley, H.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
34.  34-‌ Najafi, N., and Towfigi, H. 2006. Effects of rhizosphere of rice plant on the inorganic phosphorous fractions in the paddy soils of north of Iran: Native soil phosphorus fractions. Iran Journal of Agricultural Sciences, 38(1): 919-935. (In Persian)
35.  Nelson, R.E. 1982. Carbonate and gypsum. In: Page A.L., Miller R.H., Keeney D.R. (eds), Methods of Soil Analysis. American Society of Agronomy, Madison. pp. 181–197.
36.  Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page, A.L. (Ed.), Methods of Soil Analysis. Part 2. 2nd Edition Agronomy. Monographs. 9. ASA, Madison, WI. pp: 539-579.
37.  Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., and Niandou, M.A.S. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174: 105–112.
38.  Ogaard, A.F. 1996. Effect of fresh and composted cattle manure on phosphate retention in soil. Acta Agriculturae Scandinavica B-Plant Soil Sciences, 46(2), 98-105.
39.  Olsen, S.R., and Sommers, L.E. 1982. Phosphorus. In Klute, A. (ed.), Methods of Soil Analysis Part 2: Chemical and microbiological Methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 403-430.
40.  Parvage, M.M., Ulén, B., Eriksson, J., Strock, J., and Kirchmann, H. 2013. Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 49(2): 245-250.
41.  Peng, X., Ye, L.L., Wang, C.H., Zhou, H., and Sun, B. 2011. Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112(2): 159-166.
42.  Pierzynski, G.M., Logan, T.J., and Traina, S.J. 1990. Phosphorus chemistry and mineralogy in excessively fertilized soils: Solubility equilibria. Soil Science Society of America Journal, 54(6): 1589-1595.
43.  Ribas, L.C.C., Mendoça, M.M., Camelini, C.M., and Soares, C.H.L. 2009. Use of spent mushroom substrates from Agaricus Subrufescens (syn. A. Blazei, A. brasiliensis) andLentinula edodes productions in the enrichment of a soil-based potting media for lectucce (Lactua sativa) cultivation: growth promotion and soil bioremediation. Bioresource Tecnology, 100: 4750–4757.
44.  Rhoades, J.D. 1982. Soluble salts. In: Page AL, Miller RH, KeeneyDR (eds) Methods of soil analysis. part 2, 2nd edn. Chemical and microbiological methods. Soil Science Society of America and American Society of Agronomy, Madison, WI, USA. pp: 167–179.
 
45.  Sanyal, S.K., and De Datta, S.K. 1991. Chemistry of phosphorus transformations in soil. Advances in Soil Science, 16: 1–120.
46.  Sharpley, A., Foy, B., and Withers, P. 2000. Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview. Journal of Environmental Quality, 29(1), 1-9.
47.  Shelton, J.E., and Coleman, N.T. 1968. Inorganic phosphorus fraction and their relationships to residual value of large application of phosphorus on high phosphorus fixing soil. Soil Science Society of America, Proceedings, 32: 91 -94.
48.  Sujana, I.P., Lanya, I., Subadiyasa, I.N.N., and Suarna, I.W. 2014. The effect of dose biochar and organic matters on soil characteristic and corn plants growth on the land degraded by garment liquid waste. Journal of Biology, Agriculture and Healthcare, 4(5): 77-88.
49.  Talibudeen, O. 1958. Isotopically exchangeable phosphorus in soils. Journal of Soil Science, 9(1): 120-129.
50.  Tehrani, M.M., Balali, M.R., Moshiri, F., and Daryashnas, A.M. 2012. Recommendations and estimates of fertilizer in Iran: Challenges and Solutions. Journal of Soil Research, 26 (2): 123-144. (In Persian).
51.  Tryon, E.H. 1948. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecological Monographs, 18(1): 83-113.
52.  Yu, W., Ding, X., Xue, S., Li, S., Liao, X., and Wang, R. 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science and Plant Nutrition, (AHEAD). pp: 23-31.
53.  Zhai, L., CaiJi, Z., Liu, J., Wang, H., Ren, T., Gai, X., and Liu, H. 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils, 51(1): 113-122.