نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی بیوسیستم، دانشکدة کشاورزی، دانشگاه بوعلی‌سینا، همدان.

2 دانشیار گروه مهندسی بیوسیستم، دانشکدة کشاورزی، دانشگاه بوعلی‌سینا، همدان.

3 دانشجوی دکتری مهندسی بیوسیستم، دانشکدة کشاورزی، دانشگاه بوعلی‌سینا، همدان

چکیده

هدف از انجام این مطالعه، ارزیابی تاثیر درجه حرارت هوا، توان میکروویو و فشار خلاء در روند خشک­کردن مغز بادام و محاسبه ضریب پخش موثر رطوبت، انرژی فعال­سازی، انرژی مصرفی، چروکیدگی و تغییرات کلی رنگ  مغز بادام در طی فرآیند خشک­کردن بود. در این پژوهش خواص خشک­شدن مغز بادام با رطوبت اولیه 47% بر پایه خشک در یک خشک­کن خلائی مادون قرمز با پیش­تیمار میکروویو با پیش­تیمار میکروویو مورد مطالعه قرار گرفت. آزمایش­های خشک‌کردن مغز بادام در سه سطح دمای هوای خشک­کن (45، 60 وC ° 75)، سه سطح توان میکروویو (270، 450 و W 630) و سه فشار خلاء (20، 40 و kPa 60) و در توان مادون قرمزW100 انجام شد. هفت مدل ریاضی خشک‌کردن مغز بادام با داده­های سینتیک به دست آمده از آزمایش­ها برازش داده شد. نتایج نشان داد که مدل میدیلی و همکاران دارای بهترین عملکرد بود. بیشترین و کمترین مقدار ضریب پخش رطوبت موثر به ترتیب  m2/s9-10 33/5 و m2/s 10-10 03/8  به دست آمدند. مقادیر انرژی فعال­سازی برای مغز بادام بین 73/28 و kJ/mol 84/51 محاسبه شد. بیشترین و کمترین مقدار انرژی مصرفی به ترتیب kWh 26/0 و kWh 07/0  به دست آمد. بیشترین و کمترین مقدار چروکیدگی به ترتیب 14/14% و 78/7% تعیین شد. بیشترین میزان تغییر کلی رنگ 85/8 و کمترین مقدار آن 61/2 حاصل گردید. با توجه به اهمیت شاخص­های کیفی، توصیه می‌شود که برای داشتن کمترین مقدار چروکیدگی و تغییر رنگ، مغز بادام را در دمای C° 45، توان میکروویو W 270 و فشار خلاء kPa 20 خشک کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling of some thermal and physical properties of almond kernels under vacuum-infrared dryer with microwave pretreatment

نویسندگان [English]

  • M. Safari 1
  • R. Amiri Chayjan 2
  • B. Alaei 3

1

2

3

چکیده [English]

Introduction Almond (Amygdales Communist L.) is a perennial plant growing in the cold and xeric environments of Iran. The kernels of almond form an important source of energy and protein. An infrared- vacuum dryer with microwave pretreatment benefits includes high mass transfer coefficients and high quality and the appropriate control on dryer conditions. The aim of this study was to evaluate the effect of air temperature, microwave power and vacuum pressure in drying process of almond kernels and calculate the effective moisture diffusivity, activation energy, energy consumption, shrinkage and color changes.
Materials and Methods Fresh almond kernels were obtained from a field located in Asadabad (Hamedan Province), Iran and stored in a refrigerator at 4±1˚C for experiments. The initial moisture content of almond kernels was determined by drying of 10 g of sample in an oven at 105±1°C until constant weight was attained. In this study, the drying properties of almond kernels with moisture content of 47% (d.b.) in an infrared- vacuum dryer with microwave pretreatment were investigated. Three levels of air temperatures (45, 60, 75 °C), three levels of microwave powers (270, 450 and 630 W) and three levels of vacuum pressures (20, 40 and 60 kPa) were applied to perform the experiments. Seven mathematical models were fitted to the experimental drying data of almond kernels. Weight loss of samples was measured and recorded every 20 seconds in microwave dryer and every 300 seconds in infrared-vacuum dryer, respectively. Drying time was defined as the time required to reduce moisture content of samples to 0.1 g of water per g of dry mass.
Results and Discussion It was observed that increasing the air temperature and microwave power decreased the time required to reach a certain level of moisture ratio. Also, by reducing the vacuum pressure, drying time for almond kernels was decreased. The results showed that the highest values of coefficient of determination were obtained with the Midilli et al. model.  The Midilli et al. model gives higher R2 and lower RMSE and . Therefore, the Midilli et al. model may be supposed to demonstrate the drying behavior of the almond kernels in an infrared-vacuum dryer with microwave pretreatment. The maximum value of Deff (5.33×10-9 m2/s) during the experiments was depending on the air temperature of 75˚C, vacuum pressure of 20 kPa and microwave power of 630W. The minimum value of Deff  (8.03×10-10 m2/s) depended on the air temperature of 45˚C, vacuum pressure of 60 kPa and microwave power of 270W. Air temperature had a larger effect on the Deff values of almond kernels drying. Minimum and maximum values of activation energy (Ea) for almond kernels were 28.73 and 51.84 kJ/mol, respectively. The highest and lowest values of energy consumption were 0.26 at air temperature of 45˚C, vacuum pressure of 20 kPa and microwave power of 270W and 0.07 kWh at air temperature of 75˚C, vacuum pressure of 60 kPa and microwave power of 630W, respectively. Increase in inlet air temperature demonstrated an exponential decrease in energy consumption. It was also observed that increase of inlet air temperature, vacuum pressure and microwave power decreased specific energy consumption.
 Maximum and minimum values of shrinkage were 14.14% at air temperature of 75˚C, vacuum pressure of 60 kPa and microwave power of 630W and 7.78% computed at air temperature of 45˚C, vacuum pressure of 20 kPa and microwave power of 270W, respectively. The results indicated that the shrinkage increased with increasing air temperature, vacuum pressure and microwave power but the effect of air temperature was more than other parameters. Raising the drying temperature increased the movement of water molecules and made increasing the distance between the molecules in the structure of the sample.
The highest and lowest values of total color change were 8.85 at air temperature of 75˚C, vacuum pressure of 60 kPa and microwave power of 630W and 2.61 at air temperature of 45˚C, vacuum pressure of 20 kPa and microwave power of 270W, respectively. Results showed that total color change increased with increasing air temperature, microwave and vacuum pressure.
Conclusion With respect to the quality indices of shrinkage and color changes, the recommendation is to dry the almond kernels under air temperature of 45 °C, microwave power of 270 W and vacuum pressure of 20 kPa.

کلیدواژه‌ها [English]

  • Activation energy
  • Almond
  • Shrinkage
  • Effective moisture diffusivity
  1. Aghbashlo, M., Kianmehr, M.H., and Samimi-Akhijahani, H. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of beriberi fruit (Berberidaceae). Energy Conversion and Management, 49: 2865–2871.
  2. Alaei, B., and Amiri Chayjan, R. 2015. Drying Characteristics of pomegranate arils under near infrared-vacuum conditions. Journal of Food Processing and Preservation, 39 (5): 469-479.
  3. Arevalo-Pinedo, A., and Murr, F.E.X. 2007. Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80(1): 152–156.
  4. Artnaseaw, A., Theerakulpisut, S., and Benjapiyaporn, C. 2010. Development of a vacuum heat pump dryer for drying chilli. Biosystems Engineering, 105: 130–138.
  5. Ayensu, A. 1997. Dehydration of food crops using solar dryer with convective heat flow. Solar Energy, 59: 121–126.
  6. Beheshti, B., Khoshtaghaza, M.H., Bassiri, A., and Minaee, S. 2005. Selection of a suitable Thin Layer Drying Model for Almond. IV International Symposium on Pistachios & Almonds. 22-25 May. Tehran. Iran. (in Persian with English abstract).
  7. Beheshti, B., and Mokhtari, F. 2014. Investigation of Two-Stage Drying of Almond and its Influence on Drying Time. The 8th national congress on agriculture machinery engineering (biosystem) and mechanization. 29-31 January. Mashhad. Iran. (in Persian with English abstract)
  8. Bodaghi, V., Rasekh, M., Afkari-Sayyah, A.H., Yaghoubian, B. and Golmohammadi, A. 2011. Some physical and mechanical properties of two varieties of Almond. Journal of Food science and technology, 8(29): 49-57.
  9. Dimatteo, M., Cinquant, A., Galiero, G., and Crescitelli, S. 2000. Effcet of novel physical pretreatment process on the drying kinetics of seedless grapes. Journal of Food Engineering, 46: 83-89.
  10. Doymaz, I. 2004. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61: 359–364.
  11. Doymaz, I. 2005. Drying behavior of green beans. Journal of Food Engineering, 69: 161–165.
  12. Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79: 243–248.
  13. Ertekin, C., and Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63: 349–359.
  14. FAO, 2012. Statistics. www.FAO.org. html (accessed May 2013).
  15. Fritzen-Freire, C.B., Prudêncio, E.S., Amboni, R.D. M.C., Pinto, S.S., Negrão-Murakami, A.N., and Murakami, F.S. 2012. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International, 45: 306–312.
  16. Gholami, R., Lorestani, A.L., and Jaliliantabar, F. 2012. Determination of physical and mechanical properties of Zucchini (summer squash). Agricultural Engineering International: CIGR Journal, 14(1): 136-140.
  17. Giri, S.K., and Prasad, S. 2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2): 512–521.
  18. Hashemi, G., Mowla, D., and Kazemini, M. 2009. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. Journal of Food Engineering, 92: 331–338.
  19. Karathanos, V.T. 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39: 337–344.
  20. Lee, G., and Hsieh, F. 2008. Thin-layer drying kinetics of strawberry fruit leather. Transaction of the ASABE, 51:1699–1705.
  21. Lee, J.H., and Kim, H.J. 2009. Vacuum drying kinetics of Asian white radish (Raphanus sativus L.) slices. LWT - Food Science and Technology, 42: 180–186.
  22. Maghsoudi, S. 2010. Food Drying Technology. Iran agriculture science. Tehran. (in Persian)
  23. Mahmoodi, M., Taheri, M., Khazaei, J. and Mohamadi, N. 2008. Modeling Some Mechanical Properties Distributions of Almond Using Weibull Function. 18th National Congress on Food Technology, Mashhad, Iran. (in Persian with English abstract)
  24. Mayor, L., and Sereno, A.M.  2004. Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 61: 373–386.
  25. Menges, H.O., and Ertekin, C. 2006. Mathematical modeling of thin layer drying of golden apples. Journal of Food Engineering, 77: 119–125.
  26. Mercier, S., Villeneuve, S., Mondor, M., and Des Marchais, L.P. 2011. Evolution of porosity, shrinkage and density of pasta fortified with pea protein concentrate during drying. LWT - Food Science and Technology, 44: 883- 890.
  27. Midilli, A., Kucuk, H., and Yapar, Z. 2002. A new model for single layer drying. Drying Technology, 20: 1503–1513.
  28. Mirzabe, A.H., Khazaei, J., Chegini, G.R. and Gholami, O. 2013. Some physical properties of almond nut and kernel and modeling dimensional properties. Agricultural Engineering International: CIGR Journal, 15(2): 256-265.
  29. Motevali, A., Minaei, S., Khoshtaghaza, M.H., and Amirnejat, H. 2011. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy, 36: 6433-6441.
  30. Ozkan, A., Akbudak, B., and Akbudak, N. 2007. Microwave drying characteristics of spinach. Journal of Food Engineering, 78: 577–583.
  31. Ruiz Celma, A., Rojas, S., and Lopez-Rodriguez, F. 2008. Mathematical modelling of thin layer infrared drying of wet olive husk. Chemical Engineering and Processing, 47: 1810–1818.
  32. Sharma, G.P., and Prasad, S. 2001. Drying of garlic cloves by microwave-hot air combination. Journal of Food Engineering, 50: 99–105.
  33. Swasdisevi, T., Devahastin, S., Sa-Adchom, P., and Soponronnarit, S. 2009. Mathematical modeling of combined far-infrared and vacuum drying banana slice. Journal of Food Engineering, 92: 100–106.
  34. Tavakolipour, H. 2007. Drying of food and agricultural products. Aeezh, Tehran, Iran.
  35. Tunde-Akintunde, T.Y., and Ogunlakin, G.O. 2011. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin. Energy Conversion and Management, 52: 1107–1113.
  36. Valverde, M., Madrid, R., and Garcia, A.L. 2006. Effect of the irrigation regime, type of fertilization, and culture year on the physical properties of almond (cv. Guara). Journal of Food Engineering, 76: 584–593.
  37. Wang, C.Y., and Singh, R.P. 1978. A single layer drying equation for rough rice. ASAE Paper No: 3001.
  38. Xiao, H.W., Pang, C.L., Wang, L.H., Bai, J.W., Yang, W.X., and Gao, Z.J. 2010. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105: 233–240.