نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان

2 استاد گروه مهندسی علوم خاک، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استادیار دانشکده کویرشناسی دانشگاه سمنان

4 استادیار گروه مهندسی علوم خاک دانشگاه شهید باهنر کرمان

چکیده

اندازه گیری ظرفیت تبادل کاتیونی خاک در سطوح وسیع، بسیار پرهزینه و وقت گیر است. برآورد این خصوصیت به­وسیله ویژگی‌های زودیافت خاک، از طریق روش‌های پارامتریک و غیرپارامتریک (توابع انتقالی) می‌تواند رویکرد مناسبی باشد. در این پژوهش، روش پارامتریک رگرسیون‌های خطی و غیر خطی و روش‌های غیر پارامتریک شبکه‌های عصبی مصنوعی، رگرسیون درختی و فازی عصبی در تخمین ظرفیت تبادل کاتیونی خاک مورد استفاده قرار گرفت. برای این منظور 1770 نمونه خاک از مناطق مختلف ایران انتخاب شدند که 1414 عدد برای آموزش و 356 عدد از آن­ها به عنوان داده­های آزمون مدل­ها استفاده شدند. بررسی همبستگی‌ها نشان داد که پارامترهای رس و درصد ماده آلی خاک بیش­ترین ارتباط را با ظرفیت تبادل کاتیونی خاک دارند؛ بنابراین این ویژگی­ها به عنوان متغیر مستقل ورودی (ویژگی زود­یافت) و ظرفیت تبادل کاتیونی به عنوان متغیر وابسته خروجی انتخاب شدند. ریشه میانگین مربعات خطا و ضریب تبیین در روش رگرسیون خطی برابر 74/4 و 50/0 و در روش رگرسیون غیر خطی برابر 71/4 و 52/0 بود که نشان می‌دهد که هر دو روش با دقت نسبتاً خوب و یکسانی قادر به پیش‌بینی ظرفیت تبادل کاتیونی خاک می‌باشند؛ همچنین نتایج نشان داد که روش رگرسیون غیر خطی فقط سبب بهبود 6/0 درصدی دقت پیش‌بینی ظرفیت تبادل کاتیونی خاک شده است. نتایج نشان داد که استفاده از روش‌های شبکه عصبی مصنوعی سبب بهبود معنی‌داری در دقت برآورد ظرفیت تبادل کاتیونی خاک نمی‌شود. بیش­ترین بهبود در پیش‌بینی مدل به نسبت توابع انتقالی خطی در روش شبکه عصبی پس انتشار مشاهده شد. این روش سبب بهبود 3 درصدی پیش‌بینی ظرفیت تبادل کاتیونی خاک گردید. دقت برآورد روش درخت تصمیم، اندک بهتری از روش‌های شبکه عصبی مصنوعی بود. بهبود نسبی این روش نسبت به رگرسیون خطی برابر با 4/4 درصد بود؛ اما بیشترین بهبود نسبی در روش فازی عصبی مشاهده شد. این روش سبب کاهش 15 درصدی خطا به نسبت معادلات رگرسیونی خطی گردید؛ لذا این نتایج نشان می­دهد که یکی از  بهترین روش­ها در پیش‌بینی ظرفیت تبادل کاتیونی خاک‌های ایران، روش فازی عصبی می­باشد. 

کلیدواژه‌ها

عنوان مقاله [English]

Prediction Cation Exchange Capacity using Different Methods in Soils of Iran

نویسندگان [English]

  • R Taghizadeh-Mehrjardi1 1
  • F Sarmadian 2
  • A. A Zolfaghari 3
  • A. Jafari 4

چکیده [English]

Introduction: Cation exchange capacity (CEC) has long been input parameter of many environmental models (Manrique et al., 1991). Added to this, CEC data can give more clear and complete interpretation of soil, plant nutrition process and consequently fertilizer and soil amendment requirements. Laboratory analysis is the most accurate method for direct measurement of CEC. However, direct measurement of CEC is difficult, particularly in the soils of arid and semi-arid regions of Iran, due to large amounts of calcium carbonate that makes measuring expensive, laborious, and time-consuming (Amini et al., 2005). It can be an appropriate approach to predict CEC from readily available properties via developing nonparametric or parametric methods (Minasny et al., 1999). Therefore, the objectives of this study were to compare and apply different data mining approches including multi-linear regression (MLR), multi-nonlinear regression (MNR), cascade neural network (CNN), two radial base functions (RBF), multi-layer perceptron neural network (MLP), and adaptive neuro-fuzzy inference system (ANFIS) to estimate cation exchange capacity in different soils of Iran.
Materials and Methods: For this purpose, 1770 soil samples were selected from different sites in Iran from which 356 samples were used as the testing data, and the remaining 1414 soils were employed as the training. The soil samples were dried, crushed and passed through a 2 mm sieve to prepare for physical and chemical analyses. The percentages of sand (50 -2000 mμ), silt (2-50 mμ) and clay (<2μm) were determined using the hydrometer method according to USDA soil textural classification system. The soil organic carbon was determined using Walkly-Black method and the CEC was measured by the standard method. Then the data mining techniques (i.e. MLR, MNR, CNN, RBF, MLP, ANFIS) were applied to predict CEC from readily available data (i.e. soil organic carbon and clay percentages). Finally, to compare efficiencies of these techniques, different error criteria including root mean square error (RMSE), mean error (ME), coefficient of determination (R2) and relative improvement (RI) were applied. In the present research, an effort was made to calculate the uncertainty of pedotransfer functions using Monte Carlo technique.
Results and Discussion: Statistical analyses indicated the soil organic matter and soil texture have the highest variation. For example, variation of SOM has ranged from 0.01 to 2.94. Investigation of correlation coefficients shows that CEC is more related to the parameters, clay and soil organic matter content. Thus, the parameters, clay, silt, sand and organic carbon content were the input independent variables (readily available properties), and the CEC was an output dependent variable in this study. Root mean square error (RMSE) of linear and nonlinear regression was 4.74 and 4.71 meq 100g-1, respectively. This indicates that both methods are able to properly and equally predict CEC. Nonlinear recession equation increased the accuracy of prediction by 0.6 %. Results show that nonparametric artificial neural networks do not increase the accuracy of prediction CEC, significantly. The best result of neural networks was obtained using MLP. Nonparametric regression tree accuracy was slightly better than artificial neural network methods (4.53 and 4.61 meq 100g-1, respectively). The best method for prediction of CEC was ANFIS (RMSE=4.02 meq 100g-1). The accuracy of prediction using this method was 15 % more than linear regression. Moreover, the ANFIS model on the partitioned data by fuzzy k-means cloud enhances the prediction accuracy up to 26%. Monte Carlo results indicate the highest and lowest uncertainty belongs to MLR and ANFIS models, respectively.
Conclusion: In the present research, different data mining techniques were applied to predict CEC in various ranges of soils. The data base related to 1770 soil samples was gathered from all over Iran. Results of the comparison indicate the highest prediction accuracy belongs to ANFIS model. Moreover, partitioning the data base to four groups enhances the accuracy of models. This result confirms that pedotransfer functions are more reliable only on the range of existing data. Overall, our efforts resulted only in R2 of 0.58. This means that soil organic matter and clay percentage could only model the 58% CEC variation. This suggests we should incorporate more input data including kind of clay mineral, percentage of calcium carbonate, gypsum, and etc.

کلیدواژه‌ها [English]

  • Cation Exchange Capacity
  • Pedotransfer function
  • Neural Network
  • Neuro-fuzzy
  • Regression tree
  1. Aali, K.A., Parsinejad, M., and Rahmani, B. 2009. Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques. Computer and Information Science, 2: 127–136.
  2. Akbarzadeh, A., Taghizadeh Mehrjardi, R., Rouhipour, H., Gorji M., and Refahi, H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5: 505–514.
  3. Amini, M., Abbaspour, K.C., Khademi, H., Fathianpour, N., Afyuni, M., and Schulin, R. 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. Europian Journal of Soil Science, 53: 748–757.
  4. Azmathulla, H.M., Chang, C.K., Ghani, A., Ariffin, J., Zakaria, N.A., and Abu Hasan, Z. 2008. An ANFIS-based approach for predicting the bed load for moderately sized rivers. Journal of Hydro-environment Research, 3: 35–44.
  5. Bell, M.A., and Van Kulen, H. 1995. Soil pedotransfer function for four Mexican soils. Soil Science Society of America Journal, 59: 865-871.
  6. Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science, 9: 177–213.
  7. Bower, C.A., Reitmeir, R.F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73:251-261.
  8. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. 1984. Classification and regression. Tress. Wadsworth, Belmont, CA.
  9. Brus, D.J., Kempen, B., Heuvelink, G.B.M. 2011. Sampling for validation of digital soil maps. Europian Journal of Soil Science, 62 (3): 394–407.
    1. Carrow, R.N., Waddingtone, D.V., and Rieke, P.E. 2001. Turfgrass soil fertility and chemical problems. John Wiley and Sons, New York.
    2. Civelekoglu, G., Perendeci, A., Yigit, N. O., and Kitis, M. 2007. Modeling carbon and nitrogen removal in an industrial wastewater treatment plant using an adaptive network-based fuzzy inference system. Clean-Soil, Air, Water, 35: 617–625.
    3. Drake, J.T. 2000. Communications phase synchronization using the adaptive network fuzzy inference system. Ph.D. dissertation, New Mexico State University, Las Cruces, New Mexico, USA.
    4. Farokhnia, A., and Morid, S. 2013. Uncertainaty analysis of artificial neural network and neuro-fuzzy models in prediction of river flow. Journal of Water Resources Research, 3: 14–27.
    5. Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. p. 383-411, In: A. Klute. (ed), Methods of Soil Analysis. Part 1, American Society of Agronomy Madison, WI.
    6. Ghorbani, S., and Homaei, M. 2003. Evaluation of soil un-saturated hydoroulic parametes using pedotransfer functions. Journal of Agricultural Engeneering Research, 3: 3–15.
    7. Givi, J., Prasherb, S.O., and Patel, R.M. 2004. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agricultural Water Management, 70: 83–96.
    8. Grimm, R., Behrens, T., Marker, M., and Elsenbeer, H. 2008. Soil organic carbon concentrations and stocks on Barro Colorado Island - digital soil mapping using random forests analysis. Geoderma, 146: 102–113.
    9. Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23: 665–685.
    10. Kalkan, E., Akbulut, S., Tortum, A., and Celik, S. 2008. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology, 12: 254–267.
    11. Karimian, A. 1995. Influence of clay and organic matter in cation exchange capacity of calcaleuurou soils of Fars. 5th Soil Science Congress, Karaj, Iran.
    12. Kashi, H., Emamgholizadeh, S., and Hashemi, A. 2013. Prediction of cation exchange capacity in the bare and cultivated lands using multiple regression and artificial neural network. Journal of Soil and Water, 27: 472–484.
    13. Kayadelen, C., Günaydın, O., Fener, M., Demir, A., and Özvan, A. 2009. Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Systems with Apllications, 36: 11814–11826.
    14. Kimar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., and Pruitt, W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering, 128: 224–233.
    15. Kisi, O. 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences–Journal–des Sciences Hydrologiques, 50: 683–696.
    16. Krogh, L., Madsen, H.B., and Greve, M.H. 2000. Cation exchange capacity pedotransfer functions for Danish soils. Acta Agriculture Scandinavica, Section B — Soil and Plant Science, 50: 1-12.
    17. Lee, E.S. 2000. Neuro-Fuzzy estimation in spatial statistics. Journal of Mathematical Analysis and Applications, 249: 221–231.
    18. Luoto, M. and Hjort, J. 2005. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, 67: 299-315.
    19. Manrique, L.A., Jones, C.A., and Dyke, P.T. 1991. Predicting cation exchange capacity from soil physical and chemical properties. Soil Science Society of America Journal, 50: 787–794.
    20. Manyame, C., Morgan, C.L., Heilman, J.L., Fatondji, D., Gerard, B., and Payne, W.A. 2007. Modeling hydraulic properties of sandy soils of Niger using pedotransfer functions. Geoderma, 141: 407–415.
    21. McBratney, A.B., Minasny, B., Cattle, S.R., and Vervoort, R.W. 2002. From pedotransfer functions to soil inference systems. Geoderma, 109:41-73.
    22. Meamarian-Fard, M., and Beigi, H. 2009. Comparison of multiple regression and artificial neural network pedotransfer functions for prediction of cation exchange capacity in soils of Chaharmahal-Bakhtiari. Journal of Soil and Water, 23: 90–99.
    23. Moghaddamnia, A., Ghafari-Gousheh, M., Piri, J., Amin, S., and Han, D. 2009. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources, 32: 88–97.
    24. Mohajer, R., Salehi, M., and Beigi, H. 2009. Prediction of cation exchange capacity using multiple regression and artificial neural network and effect of data partitioning on the accuary of models. Journal of Soil and Water, 49: 83–97.
    25. Moonjun, R., Farshad, A., Shrestha, D.P., and Vaiphasa, C. 2010. Artificial neural network and decision tree in predictive soil mapping of Hoi Num Rin sub-watershed, Thailand. Digital Soil Mapping, Progress in Soil Science 2, pp. 151- 164
    26. Moran, C.J., and Bui, E.N. 2002. Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science, 16: 533-549.
    27. Quinlan, J.R. 2001. Cubist: An Informal Tutorial. http://www.rulequest.com.
    28. Schaap, M.G., Leij, F.J., and van-Genuchten, M.T. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62: 847–855.
    29. Seybold, C.A., Grossman, R.B., and Reinsch, T.G. 2005. Predicting cation exchange capacity for soil survey using linear models. Soil Science Society of America Journal, 69: 856–86.
    30. Taghizadeh-Mehrjardi, R., Mahmoodi, S., Heidari, A., and Akbarzadeh, A. 2009. Estimation of cation exchange capacity using multiple regression and artificial neural network techniques in Khezrabd region, Yazd. Journal of Research in Agriculture, 1: 1–11. (in Persian).
    31. Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B.P. 2014. Digital mapping of soil salinity in Ardakan, central Iran. Geoderma, 213: 15-28.
    32. Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J., and Omid, M. 2014. Digital mapping of soil classes using decision tree and auxiliary data in Ardakan. Arid Land Research and Management, 28:147–168.
    33. Tamari, S., Wosten, J.H.M., and Ruz-suarez, J.C. 1996. Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Science Society of America Journal, 60: 1732–1741.
    34. Terzi, O., Keskin, M.E., and Taylan, E.D. 2007. Estimating evaporation using ANFIS. Journal of Irrigation and Drainage Engineering, 132:503–507.
    35. Walkey, A., and Black, I.A. 1934. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science Society of America Journal, 79: 459-465.
    36. Zolfaghari, A., Soltani, M., Afshari, T., and Sarmadian, F. 2013. Comparison of K-nearest neighbor and artificial neural network techniques in prediction of cation exchange capacity. Journal of Soil Management and Sustainable, 3: 77–94.