Soil Physics, Erosion and Conservation
Bahareh Kiani; Farshad Kiani; Azam Rezaee; Pouneh Ebrahimi; Samaneh Mahzari
Abstract
Introduction: Different strategies have been proposed to sustainable soil management, including conservation agriculture. Conservation agriculture is based on four principles. Reducing plowing and soil disturbance, leaving an appropriate amount of plant residues on the soil surface, crop rotation with ...
Read More
Introduction: Different strategies have been proposed to sustainable soil management, including conservation agriculture. Conservation agriculture is based on four principles. Reducing plowing and soil disturbance, leaving an appropriate amount of plant residues on the soil surface, crop rotation with an economic cultivation pattern, and sustainable production of agricultural products with benefits are the basis of these four principles. The economic benefits of conservation agriculture and tillage in the early years have challenges in terms of implementation. There are few studies on the impact of the initial phase of conservation agriculture on soil nutrients and its consequences, so this study aims at the impact of Various protection management on some soil quality indicators during the initial years of implementation. Recently, farmers in Golestan province have been following the conservation agriculture in their fields without implementing a standard method and uniform instructions. Therefore, different results are obtained by implementing conservation tillage methods. In general, the economic benefits of conservation agriculture in the first year of its implementation are very controversial, and farmers think that the implementation of conservation agriculture may not be profitable due to the high consumption of herbicides and low yield, especially in the early years of its implementation.Methods and Materials: This study was conducted in Nokandeh region of Golestan province in the form of a randomized complete block experiment in three types of management including optional(minimum) tillage (MT), Conservation agriculture (CA) and conventional tillage (CT) and in 4 years. In each management, 30 soil samples were selected from the depth of 0 to 20 cm and the indicators were evaluated. Soil pH, Texture, Electrical Conductivity, Total Neutralizing Value (TNV), Soil Carbon, Total Nitrogen, Available Phosphorus and Potassium, and soil micronutrients contain Fe, Mn and Zn were evaluated using scientific methods. Data normality was also tested using the Kolmogorov-Smirnov test. The difference between the means has been calculated using Duncan's test at the confidence level of 0.01 and 0.05. SAS ver 9.4 software was used to analyze the data.Results and Discussion: he results show that the effect of tillage management on pH changes is not significant, while the effect of time on pH changes is significant at the one percent level (p ≤ 0.01). The pH in no-till in the fourth year was (7.64) and minimum tillage (7.62) and conventional tillage (7.4). The lowest pH value was in conventional tillage treatment, which decreased by 3.6 percent compared to the first year. The main decrease in electrical conductivity was observed in no-till, with a 32% decrease in soil electrical conductivity in the fourth year compared to the first year, and the minimum changes were observed in conventional tillage. The amount of organic soil in conservation agriculture and then OC was observed to increase by 47% and 17%, respectively, compared to the first year. The implementation of conservation management in different years was not significant on the amount of TNV, but the percentage of the amount of TNV was observed in tillage managements, CT > CA > CT respectively. The amount of total nitrogen has increased in MT and CA, which means a decrease in nitrogen leaching in four years. Conservation agriculture in the fourth year can increase the amount of available phosphorus in the soil by 47% compared to the first year, and the potassium element has increased by 58% in CA and 52% in MT, while the potassium content has increased by 6%. The elements of iron and zinc in MT and the amount of manganese in CA were higher. The results of the present study showed that the most important management factors affecting the initial years are the amount of soil organic matter. Soil nutrients are sensitive indicators of fertility. Changes in soil nutrients increase with a gentle slope in the initial years. And this trend is sometimes accompanied by uncertainties. There are significant aspects of water, plant, and soil interactions in nutrient cycling, etc., that are still unknown.Conclusion: The results of this study showed that although low tillage and no-till treatments improve soil nutritional and fertility indices compared to conventional tillage, the trend of changes in these indices over time is different, which may discourage farmers and promoters in the early years of implementation. Considering that different results have been obtained in this research, it seems that to achieve better and visible results by farmers, sufficient time is needed for implementation. These findings provide a practical perspective to farmers, promoters and managers to realistically pay attention to the achievements in the early years of implementation. It is suggested that in the initial years of implementation in farms with greater fragility and uncertainty, government support should be provided to reach the final sustainability of the plan.
Land Evaluation and Suitability
Nazanin Khakipour
Abstract
Introduction: Soil is a dynamic natural system and interface between land, air, water, and life, which performs vital services for human sustenance. The increasing population growth has led to the excessive use of this natural resource to provide food, clothing and other human needs. This has led farmers ...
Read More
Introduction: Soil is a dynamic natural system and interface between land, air, water, and life, which performs vital services for human sustenance. The increasing population growth has led to the excessive use of this natural resource to provide food, clothing and other human needs. This has led farmers in different parts of the world to improper exploitation of inferior and marginal lands such as pastures and forests located on sloping lands. However, on the one hand, these lands have low potential and on the other hand, they have a high potential for erosion. Soil quality is usually introduced as the ability of the soil to interact with the ecosystem maintain the productivity of the quality of different parts of the environment and thus improve the health of plants, animals and humans. The quality of soil and its importance for the development of sustainable agriculture are more important nowadays. Land use change is one of the most important current problems of our country, especially in the Hyrcanian forest lands in the north of the Iran. The objectives of this study were to evaluate the effects of land use change on some soil quality indicators in north of Iran. Materials and Methods : A part area in the south of Lahijan was selected including 3 land uses: Natural Forest (NF), Tea plantation (TP) and paddy rice (PR) cultivation. In each land use 10 soil samples were collected at 0-20 cm depth and transferred to the laboratory. Undisturbed soils samples by core was taken for measurement of bulk density. A part of sample passed through the 4 mm sieve for measurement of aggregate stability and three indices comprised mean weight diameter: MWD, geometric mean diameter: GMD and water stable aggregates: WSA were calculated. Other soil properties such as pH, Calcium carbonate equivalent (CCE), soil organic matter (SOM), particulate organic carbon (POC), and soil respiration also measured.Results and Discussion: The statistical results in this study showed that due to the change of land use from forest to tea and rice cultivation, the amount of organic carbon decreased, while the amount of pH and calcium carbonate increased. As a result of changing the use of forest land to other two land uses, the indicators of stability of soil aggregates (MWD, GMD and WSA) have significantly decreased, and as a result, the bulk density of the soil has increased. The amount of MWD was 1.95 mm in the forest, 1.2 mm in the tea plantation, and 0.45 mm in the rice cultivation. The amount of particulate organic carbon as one of the indicators of soil quality in forest lands was observed in the maximum amount. In addition to the reduction of particulate organic matter, this change is also caused by the excessive traffic of machines. Soil microbial respiration was analyzed as a soil biological indicator. The results showed that the average microbial respiration in the natural forest was equal to 300 mg C/ day.g soil, and in the two other land uses of tea and rice cultivation, it was calculated as 200 and 120 mg C/ day.g soil, respectively. Positive and significant relationship between SOM and MWD confirmed that soil organic matter had high contribution for soil aggregate formation and its stability. Conclusion: This research was conducted to investigate the impacts of land use changes in the north of Iran in Gilan province on some soil quality indicators. The results of this research showed that the soil’s chemical, physical, and biological characteristics have shown significant differences due to land use change. In forest soils, the highest amount of organic carbon, and the lowest amount of pH was observed, which is due to the high accumulation of organic matter and high leaching of cations. Due to the degradation of organic carbon in the other two uses, the bulk density and aggregate stability indicators have decreased. The intense cultivation operations in the other two uses, especially in the paddy fields, have destroyed the soil structure. Also, more organic carbon in forest soils has led to more microbial respiration. In total, all soil quality indicators have decreased with the change in land use in the study area. Therefore, land conversion and especially deforestation in the studied region should be avoided. In total, the results showed that land use change in the study area has caused land degradation and reduced the soil quality and soil health indicators, and it is necessary to consider it in land use planning, land improvement, and sustainable land management.
Masud Sadeghi mianrodi; Abdolamir Moezi; Ali Gholami; Teimor Babaei-nejad; Ebrahim Panahpur
Abstract
Introduction Land-use changes may influence various natural and ecological processes, including soil nutrients, soil moisture, soil erosion, land productivity and biodiversity. Compact cropping and lack of suitable management approaches in agricultural fields all over the world have affected soil properties ...
Read More
Introduction Land-use changes may influence various natural and ecological processes, including soil nutrients, soil moisture, soil erosion, land productivity and biodiversity. Compact cropping and lack of suitable management approaches in agricultural fields all over the world have affected soil properties in vast areas and led to changes in soil quality. The cultivation of sugarcane in the south of Iran started 60 years ago. The cultivation of sugarcane was mechanized in the southwest of Iran in the late 1950s. Over the past 40 years, the sugarcane yield has been declined from 110 to 50 tons per hectare over the same period. The long-term cultivation period (6 to 7 months), high water consumption (30,000 cubic meters per hectare at 25 to 30 turns irrigation), extensive heavy machinery uses in the planting stage, and sugarcane harvesting may change soil properties. In order to determine how these changes are taking place, it is necessary to examine the land qualitatively and quantitatively to prevent further destruction of this vast God-given source. Due to the fact that few types of research have so far been conducted on the long-term effects of cultivation on the physical and chemical properties of soil, this study aimed to investigate the effect of long-term sugarcane cultivation on some chemical and physical properties of soil in the Karoun Agro-industry Unit in Shoushtar city, Iran.Materials and Methods This research was carried out to investigate the effect of long-term sugarcane cultivation on soil chemical and physical properties in Karoun Agro-industry Unit in Dimcheh with the geographical coordinates Latitude: 32° 02' 60.00" N Longitude: 48° 50' 59.99" E and 68 meters above mean sea level located at 12 kilometres to the west of Shoushtar city in Khuzestan province of Iran. The total area of the land is 45,000 hectares. This area has warm and dry climate conditions. The dominant soils of the area are classified in the large Calcic Haplousteps group. This study was carried out as a factorial experiment based on a complete randomized design with two factors, including fields in seven levels and depth in three levels (0-30, 30-60 and 60-90 cm) and three replications. Soil samples were collected from three depths in six fields with long-term sugarcane cultivation and adjoining uncultivated land. Then, some chemical properties were measured by standard methods: Soil texture by hydrometric method, soil organic matter content by wet oxidation method, the soil sodium bicarbonate extractable phosphorus by Olsen method and available K using 1 N NH4OAc were measured. Also, total porosity and mean weight diameter were calculated based on conventional equations. Statistical analysis of data was performed by SAS 9.2 software, and the comparison of means was made using Duncan's multidomain test at a 1% probability level. Figures were also drawn using Microsoft Excel software.Results and Discussion Results indicated that land-use changes and long-term sugarcane cultivation result in soil chemical properties changes. By land-use changes, the amount of sand decreased from 22.55% in virgin soil to 6.67% in sugarcane fields. The apparent density and the mean weight diameter by changing the use of virgin soil to sugarcane farms increased by 16% and 67%, respectively, though this result was opposite for the total porosity. Also, land-use changes from virgin soil to sugarcane fields increased organic matter and absorbable phosphorus and reduced potassium absorbable and carbon-to-nitrogen ratio. Overall, changes in chemical properties in surface soil (0-30) were more than other depths (30-60 and 60-90). Also, estimating the correlation coefficients between different traits under the studied treatments showed that sand was correlated with all traits except clay and organic matter. In contrast, the clay had a positive and significant relationship with the mean weight diameter of soil aggregates.Conclusion This research showed that the soil chemical properties of different sugarcane fields significantly changed by the land-use changes of long-term sugarcane cultivation. Thus, the land-use changes, abundant irrigation and leaching increased the organic matter, the mean weight of the diameter of aggregates and the apparent density of the soil. Also, the amount of phosphorus absorbed by sugarcane and fertilization increased, while the amount of organic matter of C/N and soil absorption potassium decreased in cultivated land. Potassium is essential for sugarcane growth, and the reduction of potassium absorbable can cause limitations in its growth and performance. On the other hand, concerns about soil density and change in the optimal plant growth conditions due to heavy agricultural machinery are clear and severe. Therefore, creating a cultivated system with minimal density is essential. Also, soil chemical properties monitoring and maintaining the quality of the studied soils must be considered in land management approaches.Keywords: Land management, land-use changes, Soil quality, sugarcane
Precision Agriculture
ُseyyed Mohammad Mousavai; Hojat Emami; Gholam Hosain Haghnia
Abstract
Extended abstractIntroductionKnowledge about the soil quality in agriculatral lands and natural resources is essential for achievement the best management and maximum economic efficiency. The land use change is the important human activity in environmental ecosystems, which effect on some soil processes ...
Read More
Extended abstractIntroductionKnowledge about the soil quality in agriculatral lands and natural resources is essential for achievement the best management and maximum economic efficiency. The land use change is the important human activity in environmental ecosystems, which effect on some soil processes such as microbial activity, mineralization of carbon and nitrogen content. In addition, land use has an important role on temporal and spatial variation of soil properties and quality. Agricultural practices may affect positive or negative effect on soil quality. Intensive cultivation of plants decreases soil physical and quality, as a result of this yield of plants, production efficiency and environment quality decrease. In this research, the effect of three land uses on soil physical, fertility and quality properties were studied. Materials and methodsThe studied area (Hossein abad) is located 30 km far from the northern Nehbandan town (South Khorasan, Iran).To study the effect of land uses change on soil properties were selected three land uses including pomegranate (Punica granatum ), olive (Olea europaea) and wheat (Triticum aestivum ). The 45 soil samples (15 samples from each land use) were taken from surface soil (0-30 cm). Then some soil physical and fertility properties which affect the soil quality were measured and the effect of land use change from wheat cultivation to olive and pomegranate gardens during the recent 20 years were studied. In addition, soil quality in each land use was determined based on cornel university test. To compare soil properties and quality, the randomized complete block design was applied.Results and discussionThe results showed that land use change had a significant effect on organic carbon, mean weight diameter of aggregates (MWD), water stable aggregates (WSA), macro nutrients (N, P, and K), and some micro nutrients (Fe and Mn) (P < 0.001). Comparison of means demonstrated that the difference between organic carbon content in olive and pomegranate land uses was not significant, and the content of OC in both land uses was significantly higher than wheat land use. Olive and pomegranate land uses cause to stability of soil structure increase, probably due to reduction the traffic of wheals and also somewhat increasing the organic carbon as a result of littering. Therefore, the MWD in olive land use was significantly higher than two land uses and the lowest value was obtained in what land use. Also, the value of WSA in three land uses was significantly different (P < 0.05) and their content in olive and wheat land uses were the maximum and minimum, respectively. The concentration of total nitrogen in pomegranate land use was more significant than two other land uses (P < 0.05). But the concentration of phosphorous (P), potassium (K), Fe and Mn in wheat land use was the highest content and significantly greater than other two land uses. Despite the concentrations of P, K, and Fe nutrients in pomegranate land use were the lowest value, but, there were no significant difference between the concentration of them in olive and pomegranate land uses. It seems that this variation especially P and Fe is probably due to pH and the Ca and Mg concentration and creation insoluble component of Fe, Mn and P in these land uses.According to the results of cornel university test, soil quality in garden land uses was decreased and the range of soil quality score was varied from 49.5 (olive) to 61.2 (wheat). Among the soil properties affecting the soil quality, fertility and chemical properties such as electrical conductivity (EC), absorption sodium ratio (SAR) and somewhat pH of soil saturated extract decreased the soil quality in olive land use. Also, OM, Fe, Zn, and Mn decreased the soil quality in 3 land uses, of course in olive and pomegranate land uses, micro nutrients (Fe and Mn) had the more effect on decreasing the soil quality compared to wheat land use. In addition, bulk density (Bd), mean weight diameter of aggregates (MWD), aeration porosity (AC), P, K, and Cu contents increased soil quality in all 3 land uses.ConclusionIn general, when wheat land use change to olive and pomegranate land uses decreased some soil properties and quality in arid area of Nehbandan, probably due to low quality of irrigation water.
Soil Physics, Erosion and Conservation
Motahareh Noorzade Roshan; Reza Ghorbani Nasrabadi
Abstract
Introduction Soil quality has been defined as a “The potential of soil to play a positive relationship with the other parts of ecosystem”. Soil biological indicators provide insight into the living component of the soil. Similar to physical and chemical indicators, biological indicators have ...
Read More
Introduction Soil quality has been defined as a “The potential of soil to play a positive relationship with the other parts of ecosystem”. Soil biological indicators provide insight into the living component of the soil. Similar to physical and chemical indicators, biological indicators have a relationship to soil functions and can evaluate soil functions to assess soil quality. Between biological indicators, an index that can be measured quickly and easily is more useful to show the changes. In many studies an indicator of microbial respiration, microbial population, nitrogen mineralization and enzymes activity can be used. Special ability is required to measure quickly and show the quality of soil microorganisms and reaction to environmental changes. Soil health is defined by chemical and physical parameters such as soil texture, soil pH, electrical conductivity, etc., that are not quantifiable completely. Therefore, conservation practices planting and forestry may directly or indirectly affect a organism’s activities. The results of land-use systems without consideration of the consequences on soil quality have been environmental degradation. Agricultural management systems have been generally adopted without attending to soil conservation and soil quality, and this therefore causes significant decline in agricultural soil health worldwide. Different methods of soil conservation have been proposed to prevent erosion and improve soil quality destructive phenomena. In Golestan province due to topographical and climatic conditions and less soil sensitivity to erosion, more attention should be given to this issue. But it remains unclear how far this conservation practice can take to prevent damage. This study aimed to investigate the role of conservative practices to improve the soil quality indicators.Materials and Methods The watershed of Chehelchai is located between North latitudes 36° 59´ and 37° 13´ and Earth longitudes 55° 23´ and 55° 38´. The history of land use in the region shows that more than about 40 years ago, all the study area was covered by forest. Agricultural land use changes occurred on a large scale. With emphasis on conservation operation, parts of the agricultural land were changed to productive gardens, partly forested, partly pasture with native species. Different land uses were selected in loess formations, and slope of 41 %, with life operations was about 6 to 7 years. Protective Operations Garden species, terraces and forestry were selected and quality of soil was compared with agricultural land, pasture and natural forest. In this regard, 10 soil samples were taken. After preparation of the samples, physical, chemical and biological analysis were measured. Additionally, soil properties (pH, Electrical Conductivity, Calcium carbonate, organic matter, texture, bulk density, aggregate stability, microbial respiration, microbial biomass population count of micro- arthropods, biological soil quality) were analyzed. The data were analyzed using software SAS. Ver 9. and the results were compared in a randomized complete block design. Analysis of variance in the form of randomized complete block design was done using the LSD multiple comparison. Results and Discussion Our results showed that the dominant soil texture class in land uses was silty loam. It seems that soil texture is less affected by the land use changes. The results showed that the changes of forest and pasture to agricultural lands have destroyed the soil quality. Soil quality indicators such as organic matter and aggregate stability have declined by 60 and 70 percent respectively. Like wise, biological indicators such as microbial respiration, microbial biomass carbon and QBS (biological soil quality indicators based on the population of micro- arthropods) and EMI (index dependence of soil to soil organisms) showed a similar trend. In contrast, the Conservation practices improved the indices. Biological indicators in the forestry and gardening showed an increase of 40 percent in EMI Microbial biomass carbon and 80 percent in microbial respiration. Terracing had less improvement than other operations in about 11 to 20 percent in EMI and microbial biomass carbon. Conclusion Conservation operations had fewer effects on indicators such as aggregate stability and organic matter. Under estimation of effects in certain indicators maybe due to short time of conservation practices. It seems that these operations will show better results in the future Received: 19 July, 2016Accepted: 10 April, 2018
Serve Moradi; Kamal Nabiollahi; Syed Mohammad taher hossaini
Abstract
Introduction Soil quality is the capacity of soil function to sustain plant and animal productivities, to maintain or enhance water and air quality and to support human health. Slope position and deforestation are known to influence soil quality and assessing the soil quality degradation is important ...
Read More
Introduction Soil quality is the capacity of soil function to sustain plant and animal productivities, to maintain or enhance water and air quality and to support human health. Slope position and deforestation are known to influence soil quality and assessing the soil quality degradation is important to soil management. Soil-quality indices are a common and easy way to quantify soil quality; they can improve understanding of soil ecosystems and allow more efficient soil management Two soil indicator selection approaches, total data sets and minimum data sets have been widely used to evaluate soil quality. The region of Marivan in Kurdistan province is one of the forested areas of Zagros which has been threatened due to population growth and increasing demand for food and, some parts are now under agriculture land use. Based on the present reports, deforestation and cultivation on the sloping areas have started almost 30 years ago. The aim of this research was to assess the effect of forest degradation and slope position on soil quality index. Materials and Methods The study area is located in Kurdistan Province, about 10 km northeast of Marivan city, west Iran (46°24΄ 46°40΄E, 35°42΄ 35°50΄N). Two adjacent sites were selected, consisting of a natural forest and deforested cultivated land on a hill slope. Average annual precipitation and temperature are 813 mm and 13.8 °C, respectively. Soil moisture and temperature regimes are Xeric and Mesic, respectively. Forests of the study area are relative intensive and their main forest vegetation is oak. In this study, 24 soil samples (0–20 cm depth) were taken from four slope positions (shoulder, back slope, foot slope and toe slope) of forest and adjacent deforested cultivated soils. Eight profiles (on each slope positions of both land uses) were also described. Fifteen soil properties: pH, electrical conductivity, sodium adsorption ratio, organic carbon, cation exchange capacity, carbonat calcium equivalent, soil erodibility, soil porosity, mean weight diameter of aggregates, available water, soil microbial respiration, available phosphorous, available potassium, total nitrogen, bulk density, were measured for 24 soil samples (0–20 cm depth). These Fifteen soil properties were applied as the total data set. Then, seven soil properties were selected as minimum data set using principle component analysis. Weight and score of each property were found using communality and scoring function (including more is better, low is better and optimum) and finally weighted additive and nemoro soil quality indices was computed. Results and Discussion: Seven soil properties (including soil organic carbon, cation exchange capacity, bulk density, soil erodibility, plant available water content, available potassium and total nitrogen) were selected as total data set using principle component analysis. The soils formed in low slope positions had higher depth and evolution compared to high slope positions. The results also showed land use change of forest land to cropland has led to degradation of Mollisols. The results showed that the mean values for weighted additive and nemoro soil quality indices in the deforested were significantly lower compared to forest. The mean values for weighted additive and nemoro soil quality indices in the shoulder were significantly lower compared to other slope position. significantly Strong Pearson correlation coefficients (0.98) were obtained between computed weighted additive soil quality index using total data set and a minimum data set. Conclusion: The results showed that forest degradation in the Marivan region led to a decrease in weighted additive and nemoro soil quality indices through a significant reduction of organic carbon, microbial respiration, total nitrogen, CEC, soil porosity and available moisture and significant increasing of bulk density, pH, SAR and soil erodibility. Forest degradation and land use change also due to cultivation led to decrease in the organic carbon content and soil structure degradation of Mollic horizon. Therefore, Mollic horizon has converted to Ochric horizon and Entisols and Inceptisols have formed in cropland land use. Moreover, the results showed different slope positions affect weighted additive soil quality index and mark significant difference. The results also showed that using the weighted additive soil quality index and minimum data set method can adequately represent total data set (R2=0.98) and thus reduce the time and cost involved in evaluating soil quality. Slope positions and where forest was converted to agriculture were characterized by low values of weighted additive soil quality index, suggesting a recovery of soil quality through changing to sustainable practices.