Plant Nutrition, Soil Fertility and Fertilizers
Sepideh Raeisi; Nafiseh Rangzan; Naeimeh Enayatizamir
Abstract
Introduction: Zinc (Zn) is a vital nutrient for plants, needed in small amounts for their reproductive and physiological functions. Zinc deficiency is common in soils with high pH, low organic matter, and high calcium carbonate. Soil salinity is one of the most important and common environmental stresses ...
Read More
Introduction: Zinc (Zn) is a vital nutrient for plants, needed in small amounts for their reproductive and physiological functions. Zinc deficiency is common in soils with high pH, low organic matter, and high calcium carbonate. Soil salinity is one of the most important and common environmental stresses in the world. The impact of salinity on the forms of zinc and its availability in soil has varied. Among the chemical forms of zinc, the soluble and exchangeable forms have the highest mobility and availability for plants; whereas the residual form, associated with the crystalline lattice of soil minerals, appears to be very inactive. Depending on the physical and chemical properties of the soil, the carbonate forms, those bound to iron and manganese oxides, and the organic forms of elements are relatively active and have the potential to be available for plants. Organic materials like carbon black can alter zinc distribution. Zinc-solubilizing bacteria enhance zinc availability by converting insoluble forms into absorbable ones. This study examines the effects of carbon black and growth-promoting bacteria on zinc forms and soil properties under varying salinity levels.Materials and Methods: In this study, to investigate the effect of carbon black and inoculation of a mixture of two bacteria on the distribution of chemical forms of zinc under salinity stress, a pot experiment with four replications was conducted as factorial with three factors: salinity (2, 5, and 8 dS m-1), carbon black (0, 4% by weight), and a mixture of two bacteria (inoculated and non-inoculated). The bacteria included Enterobacter cloacae and Bacillus sp., which were obtained from the microbial collection of the Soil Science Department at Shahid Chamran University of Ahvaz. The experiment was carried out in a completely randomized design in 2023 in the greenhouse of Khuzestan Agricultural Sciences and Natural Resources University. In 5-kilogram pots, 10 corn seeds were planted, which were reduced to 6 plants per pot after ensuring germination. Two months after planting, soil samples were taken from the pots, and after removing the roots and passing through a 2-millimeter sieve, they were transferred to the laboratory to determine the chemical forms of zinc. The sequential extraction method was used to determine the chemical forms of zinc. The fractions—exchangeable, carbonate, iron and manganese oxides, organic, and residual—were determined. The concentration of zinc in the extracts obtained from the various stages of sequential extraction of the soil was read using an atomic absorption device. Some biological properties of soil, such as microbial biomass carbon via fumigation-extraction method, catalase activity via the titration method, and soil respiration by titration of residual NaOH, were measured.Results and Discussion: The interaction effect of carbon black× inoculation× salinity on chemical forms of Zn was significant. The results showed that the inoculation of a mixture of two bacteria and addition of carbon black in soil significantly increased the soluble and exchangeable, carbonate, iron and manganese oxide, and organic forms of zinc. Inoculation of a mixture of two bacteria and carbon black to the soil at a salinity level of 2 dSm-1 resulted in an increase in EXCH-zinc from 1.02 to 1.38 mgkg-1 compared to the control, which is equivalent to a 35% increase. Inoculation of the bacterial mixture and the addition of carbon black to the soil increased all forms of zinc except the residual form. With increasing salinity level, the amounts of soluble and exchangeable, carbonate-bound, and oxide-bound forms increased, while the organic-bound form decreased. The highest amounts of microbial biomass carbon, catalase activity, and soil respiration were measured in the treatment with bacteria, carbon black, and at a salinity level of 2 dS m-1, with values of 19.9 mg-Cmic 100g-1, 0.95 mLKMnO4g-1h-1, and 70.2 mgCO2 100g-1day-1, respectively. There was a positive correlation between soil respiration and all forms of zinc, except the residual form, but the correlation between soil respiration and the residual form of zinc was negative, indicating the influence of microbial activity on different forms of zinc.Conclusion: The addition of a carbon black to the soil and inoculation of a mixture of two bacteria caused zinc to convert from residual form to soluble and exchangeable, carbonate, oxide, and organic forms, increasing the availability of zinc in accessible fractions at various salinity levels. Overall, zinc-solubilizing bacteria offer a promising solution for enhancing zinc availability in saline soils, promoting plant health, and contributing to sustainable agricultural practices.
Soil Biology, Biochemistry and Biotechnology
Majid Baghernejad
Abstract
Abstract Introduction Drought stress is one of the important environmental factors that limit distribution and productivity of major crops. Drought stress caused by reducing the availability of external water, which makes reduces the ability of the plant’s roots to take up nutrients and induced ...
Read More
Abstract Introduction Drought stress is one of the important environmental factors that limit distribution and productivity of major crops. Drought stress caused by reducing the availability of external water, which makes reduces the ability of the plant’s roots to take up nutrients and induced cellular and photo-oxidative damages, through the increased accumulations of reactive oxygen species. Plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi by using different mechanisms such as production of siderophores, organic acids, proton, growth regulators, and other chelating agents, and creative of reductive conditions, increase dissolution of minerals and mobility of non-soluble nutrients and thus improve nutrients uptake and yield of plants. They can influence plant root morphology and change the quantity and quality of root exudates. Mycorrhizal symbiosis involves a complex interaction among plant, soil and mycorrhizal fungi. Arbuscular mycorrhizal associations' relationship are rather important in crops because they are believed to increase nutrients uptake, improve plant fitness, and plant water relations and thus increase the drought resistance of host plants. Plant growth promoting rhizobacteria improve water relations of plants in part due to increases of plant growth, nutrient uptake and antioxidant activities. Maize is an effective host of arbuscular mycorrhiza in infertile and drought conditions and its root system consists of different root types. Therefore, the objectives of this study was to evaluate the effects of Glomus intraradices, Pseudomonas fluorescens (as a PGPR bacterium) and drought stress on growth characteristics and micro-nutrients uptake of maize in a calcareous soil under maize cultivation. Materials and Methods A greenhouse experiment in a factorial completely randomized design was conducted to evaluate the effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices), Pseudomonas fluorescence, and drought stress on root colonization and absorption of micro-nutrients (Fe, Mn, Zn, Cu) by maize (Zea mays). The factors were consisted of arbuscular mycorrhizal fungus at two levels: G0 (not inoculated with fungus) and G1 ( inoculated with Glomus intraradices), bacteria at two levels: B0 (not inoculated with bacterium) and B1 (inoculated with Pseudomonas fluorescence) and drought stress at four levels: S0 (without stress), S1 (75% FC), S2 (50% FC) and S3 (25% FC). Mycorrhizal inoculum was prepared through the trap culture of forage sorghum (Sorghum biocolor L.) with spore of Glomus intraradices. The potential of inoculum (spore numbers of 12 g-1 substrates and root colonization of 80%) was measured for spore extraction and counting, and evaluation of root colonization. The bacterium used in the present experiment was Pseudomonas fluorescens and provided by soil biology and biotechnology laboratory of College University of Agriculture and Natural Resources of Tehran University, Karaj, Iran. The bacterium had a high ability to dissolve poorly soluble organic and inorganic phosphate compounds, to produce siderophores, indole acetic acid (IAA), and 1-aminocyclopropane-1-carboxylate (ACC)-deaminase enzyme. A non-sterile composite soil sample was collected from depth of 0-30 cm soil surface of Agriculture Research Station of Shiraz University, Shiraz, Iran (fine, mixed, mesic, Calcixerollic Xerochrept). The samples were air-dried and passed through a 2mm sieve. Some physical and chemical properties of studied soil are measured. The seeds were inoculated with 1mL fresh and active suspension of bacterium (population of 1×108 colony-forming units (CFU) per milliliter). After a growth period of 4 months, plant materials harvested and data were subjected to analysis of variance and means were compared by least significant difference. Results and Discussion In non microbial treatments, wet and dry weights of shoot significantly decreased whereas other measured parameters had not significant changes under drought stress of 25% FC. At each level of drought stress, root colonization significantly higher in mycorrhizal treatments than non mycorrhizal treatments. The highest root colonization percent was observed in treatments of co-inoculation of plant with both inoculants. Co-inoculation of plant with both inoculants significantly increased morphological properties and shoot nutrients uptake except Fe uptake in comparison with non microbial treatments up to drought stress of 50% FC. Conclusion All measured parameters ( leaf area, wet and dry weights of root, root colonization, shoot micronutrient uptake) except wet and dry weights of shoot significantly decreased with increasing of drought stress up to 25% of FC. Single and co-application of bacterium and fungus decreased the negative effects of drought stress under low levels of water stress. Root colonization significantly increased with single application of fungus and co-inoculation of plant with fungus and bacterium. Co-application of fungus and bactrieum increased shoot nutrients uptake except Fe uptake up to 50% FC in comparison with non inoculated treatments.