Plant Nutrition, Soil Fertility and Fertilizers
Narges sousaraeS; Mojtaba Barani Motlagh; Seyed Alireza Movahedi Naeini
Abstract
Introduction: When the supply of micronutrients needed by the plant is insufficient, not only the yield of the product but also the quality of plant products are affected. Application of organic amendments is one of the ways to increase the nutrients such as zinc uptake by plants for. Biochar can be ...
Read More
Introduction: When the supply of micronutrients needed by the plant is insufficient, not only the yield of the product but also the quality of plant products are affected. Application of organic amendments is one of the ways to increase the nutrients such as zinc uptake by plants for. Biochar can be used as a raw material for the preparation and synthesis of mineral or metal composites due to its high specific surface area, porous structure and oxygen bonding groups on its surface. In these composites, biochar is used as a good porous structure to support and host metals. Biochar can have a significant impact on soil properties, the availability of nutrients, and the dynamics of the nutrients in arid and semi-arid soils, Depending on the feedstock and pyrolysis conditions However, very limited studies have examined biochar use as a nutrient carrier in the synthesis of organic-mineral compounds. Therefore, the present study was done to investigate the efficiency of zinc-enriched biochar pellets using two pre-pyrolysis and post- pyrolysis methods, and their effect on some physiological traits (chlorophyll a, b and total) and bioavailability of zinc in soil and plant.Methods and Materials A zinc deficiency Soil was collected from 0-30 cm depth under arable lands of Seyed Abad located in Azadshahr township, Golestan Province, Iran. To achieve the objectives of this study, a factorial experiment in a completely randomized design with three replications and 18 treatments (54 pots in total) was performed in the greenhouse of Gorgan University of Agricultural Sciences and Natural Resources. Factors included three types of zinc fertilizers (zinc sulphate, zinc-rich biochar prepared using pre-pyrolysis and post-pyrolysis methods) in three levels (0, 10 and 20 mg kg-1 zinc) and foliar spraying (distilled water and 3:1000 zinc). Zinc foliar spraying was done during the 6-10 leaf stage in the early hours of the morning before sunrise. Irrigation and weeding operations were performed manually. At the end of the growing period (vegetative and reproductive), some physiological traits (chlorophyll a, b, total and carotenoid), concentration and zinc uptake in shoots in the two stages of flag leaf emergence and seed maturity, and available concentration of zinc in the soil after wheat plant harvest were measured. The statistical results of the data were analyzed using SAS software and LSD test (at 5% level) was used for comparing the mean values.Results and Discussion: Based on the results, the interaction of type and levels of treatments was significant on all the studied traits at P<0.01, except for carotenoid. The means comparison showed that both zinc-enriched biochar pellets and zinc sulfate increased physiological traits in wheat plants. The highest amount of chlorophyll a, b, and total was obtained with an average of 4.99, 3.36, and 8.35 mg g-1 of fresh weight of the plant from the treatment of a pre-pyrolysis pellet with a concentration of 20 mg kg-1 with zinc sulfate foliar spraying, respectively. The highest zinc uptake in both the flag leaf emergence and seed maturity stages was obtained with an average of 120.33 and 86.62 mg kg-1 of dry weight of the plant from the pre and post-pyrolysis pellet treatment with a concentration of 20 mg/kkg with zinc sulfate foliar spraying, which had an increase of 20 mg kg-1 of zinc sulfate foliar spraying, respectively, equivalent to 27.69 and 30%. The pre-pyrolysis pellet treatment with 20 mg kg-1 zinc and zinc sulfate foliar spraying gave the most zinc extracted with DTPA, at an average of 3.41 mg kg-1. This was compared to the 10 mg kg-1 and 0 mg kg-1 pre-pyrolysis biochar pellet treatments, which gave an average of 2.39 mg kg-1 and 0.92 mg kg-1, respectively, which is an increase of 29.91 and 73.02 percent. The amount of DTPA extractable Zn with the amount of chlorophyll a (r = 0.87**), chlorophyll b (r = 0.81**), total chlorophyll (r = 0.87**), and carotenoids (r = 0.89**) had a positive and significant correlation. The results showed that between DTPA extractable Zn with zinc concentration (r = 0.91**) and zinc uptake (r = 0.90**) in the stage of flag emergence and zinc concentration (r = 0.87**) and zinc uptake (r = 0.86**) in the stage of seed maturity in the wheat plant, there was a positive and significant correlation.Conclusions: In general, the results showed that the positive role of biochar-zinc pellets in increasing the concentration and zinc uptake in wheat plants. Nevertheless, supplemental zinc foliar application with biochar pellets rich in zinc in the amount of 20 mg kg-1 in the form of post-pyrolysis had the greatest effect on the physiological characteristics and Zn bioavailability for wheat plants.
Plant Nutrition, Soil Fertility and Fertilizers
Taleb Nazari; Mojtaba Barani Motlagh; Seyed Omid Rastegar; Mohammad Hosien Sedri
Abstract
Introduction: The recovery of phosphorus as struvite from treatment plants has attracted researchers' attention due to its potential as a phosphorus fertilizer. Struvite is a white crystalline substance consisting of magnesium, ammonium and phosphorus in equal molar concentrations (MgNH4P04.6H2O). The ...
Read More
Introduction: The recovery of phosphorus as struvite from treatment plants has attracted researchers' attention due to its potential as a phosphorus fertilizer. Struvite is a white crystalline substance consisting of magnesium, ammonium and phosphorus in equal molar concentrations (MgNH4P04.6H2O). The low water solubility of struvite is thought to limit its agronomic utility as a phosphorus (P) fertilizer compared with highly soluble P fertilizers (triple superphosphate). Because limited studies have been done regarding the effect of struvite on the availability of phosphorus in calcareous soils. Therefore, this study examines the effect of struvite replacement with triple superphosphate fertilizer on phosphorus availability in wheat plants in calcareous soils deficient in phosphorus.Methods and Materials: Soil with phosphorus deficiency was collected from 0-30 cm depth under arable lands of Hajjiabad-e Seyyedeh located in Ghorveh township, Kurdistan Province, Iran. The soil was air-dried and ground to pass through a 2-mm sieve, followed by laboratory analysis to determine its physico-chemical properties. Struvite used in the research was obtained by optimizing the three main factors of sulfuric acid concentration, solid-to-liquid ratio, and time for the leaching process, and the three key factors of Mg/P ratio, N/P ratio and pH for the precipitation process by Response Surface Methodology. To achieve the aim of this study The factorial experiment was carried out in the form of a completely randomized design in 3 replications. The factors include the application of different proportions of struvite replaced with triple superphosphate in 6 levels (S0:P0, S0:P100, S25:P75, S50:P50, S75:P25 and S100:P0) and 3 levels of phosphorus (50, 100 and 150 kg/ha) and a total of 54 pots. The application rate for struvite was calculated based on total phosphorus (P2O5) of triple superphosphate. Then 10 wheat seeds were planted in each pot at 2-cm depth which after plant emerging and greening declined to 4 plants in each pot. The pots were randomly moved twice a week during the growth period to eliminate environmental effects. Irrigation and weeding operations were done by hand. Plants (shoots and roots) were harvested 60 days after planting (beginning of flowering), washed with distilled water and dry with tissue paper. The samples were air-dried and then oven dried at 70˚C to a constant weight in a forced air-driven oven. Phosphorus concentrations in plant extracts by the molybdenum vanadate or yellow method and Nitrogen concentration in plant was measured by the Kjeldahl method. After harvesting the plants, the soil was immediately air-dried and passed through a 2mm sieve. Then, the amount of phosphorus was determined by Olsen method. The statistical results of the data were analyzed using SAS software and LSD test (at 5% level) was used for comparing the mean values.Results and Discussion: Based on the obtained results, all of the investigated treatments and their interactions were significant at the probability level of one percent (P < 0.01). The comparison of the average effects of different struvite treatments showed that by replacing struvite instead of triple super phosphate fertilizer in all three levels of fertilizer, the highest shoot fresh weight (with an average of 7.79 gr/pot), shoot dry weight (with an average of 1.13 gr/pot) shoot Nitrogen concentration (with an average of 4.82%) and its uptake (with an average of 5.44 gr/pot) was obtained from the application of S75:P25 150 kg/h superphosphate fertilizer. Also, the results showed that the highest amount of phosphorus concentration and uptake, respectively, with an average of 0.174% and 0.197 gr/pot, was obtained from the application of the S75:P25 treatment with 150 kg TSP/ha, which is compared to the application of the S75:P25 treatment of 50 and 100 kg TSP/ha had an increase equivalent to 26.43, 59.89, 11.49 and 43.14% respectively. The results also showed that the highest amount of soil phosphorus after harvesting the plant with an average of 18.95 mg/kg was obtained from the S100:P0 treatment with 150 kg TSP/ha, which compared to the S100:P0 treatment with 100 and 50 kg TSP/ha with an average of 13.29 and 12.56 mg/kg had an increase equivalent to 29.86 and 33.72%, respectively. Conclusions: In spite of its low solubility, struvite is as effective as highly soluble phosphorus fertilizers for plants. There is still a lack of clarity regarding the mechanisms of struvite dissolution as well as the reasons behind this apparent dichotomy. Therefore, more accurate measurements of pH and EC in substrates, analysis of soil properties and fractionation of phosphorus in soil will enhance our understanding of the use of struvite. Therefore, it is recommended to optimize the timing and application rate of struvite in relation to the demand for different agricultural and garden crops
Soil Chemistry and Pollution
Alireza Abdollahpour; Mojtaba Barani Motlagh; Amir Bostani; Farshad Kiani; Farhad Khormali; REZA GHORBANINASRABADI
Abstract
Introduction Soil organic carbon (SOC) is the largest source of terrestrial organic carbon and small changes in its components have many effects on global warming and carbon cycle. Soil organic matter (SOM) is considered as the most complex and least known component of soil, because it consists of plant, ...
Read More
Introduction Soil organic carbon (SOC) is the largest source of terrestrial organic carbon and small changes in its components have many effects on global warming and carbon cycle. Soil organic matter (SOM) is considered as the most complex and least known component of soil, because it consists of plant, microbial and animal masses in various stages of decomposition and is a mixture of heterogeneous organic materials that are closely related with mineral components. Soil organic matter has beneficial effects on the chemical (buffering and changes in pH) and biological (precursor and supply of nutrients for microbes) properties of the soil and thus affects the fertility capacity of the soil. The quality and quantity of soil organic matter is the most important criterion for sustainable soil management. Total organic carbon (TOC) consists of labile and non-labile forms of SOC and have different degrees of sensitivity to different types of land use changes and management operations. The purpose of this research is to investigate the effect of changing land use on the chemical components of soil organic carbon and carbon recalcitrant index in Toshan Watershed, Golestan provinceMaterials and Methods For this research, four major and dominant types of land use were considered in the study area, including forest, cropping land, garden and abandoned lands in the Toshan watershed in the northwest of Gorgan city of Golestan province. The soil organic carbon and total C of soils were measured. Furthermore, the soil carbon fractionation was performed by Young's method (using hydrolysis methods with HCl and Labile fraction). In this research, Acid hydrolysis method was used to separate the recalcitrant SOM pool. For this purpose, one gram of SOM sample was treated with 25 ml of 6 M hydrochloric acid solution at 105°C for 18 hours in a Pyrex tube in a hydrolysis package. After cooling, the remaining non-hydrolyzed materials were separated by centrifugation. Then, they were dried in an oven at a temperature of 60 degrees Celsius and considered as a part of resistant organic matter. The resistant part of the soil organic carbon was determined with the CHNS Analyzer device. The Labile fraction consists of water soluble carbon, microbial biomass carbon and mineralizable carbon are measured using the following methods and the labile part of carbon is calculated from their sum. Water-soluble organic carbon is extracted by adding 20 ml of distilled water to 10 grams of wet soil. The mixture will be shaken and centrifuged, filtered. Then they will be quickly analyzed by TOC Analyzer. Microbial biomass carbon will be determined by the chloroform fumigation-extraction method. Mineralizable carbon determined as follow. The amount of CO2 will be measured by titration of NaOH solutions with 0.1 M HCl in the presence of BaCl2. Cumulative amount of CO2-C emitted in 30 days of incubation is called Mineralizable carbon. The data were analyzed based on the factorial test in the form of a completely randomized design (CRD) with two levels of soil depth and four land uses with five replications. Correlation between traits was also estimated. Statistical analyzes were performed using SAS software. Therefore, it can be concluded that depending on the climatic conditions and the condition of the soil, the forest, in terms of natural cover, the correct management of agricultural lands (using modern methods of no-tillage or low-tillage) can be a potential practice. It is to store carbon in the soil as well as various soil components and increase soil formation, which will subsequently reduce the concentration of carbon dioxide in the atmosphere.Results and Discussion The results showed that the first depth of forest use has the highest amount of total carbon and soil organic carbon (6.12% and 3.5% respectively). Also, the highest amount of resistant organic carbon (HCl hydrolysis), water-soluble organic carbon, microbial biomass carbon, and microbial mineralizable carbon were observed in forest land use. The second depth (10-20 cm) of forest land use had the highest and the second depth (10-20 cm) of garden land use had the lowest organic carbon resistance index (82.1% and 50.17%, respectively). In all land uses, except for the forest, the soil organic carbon resistance index decreased with increasing sampling depth. Due to the fact that the carbon management index can be easily calculated, it can be a suitable index for quick assessment of soil quality.Conclusion The results showed that with the change of land use and cultivation, the soil organisms received more oxygen and the speed and intensity of respiration in the soil increased in the short term, which caused more decomposition of organic matter and with the decrease of organic matter in the long term, the quality of soil decreases after a while.
Yasman Zilabpour; Mojtaba Barani; Mohammad Rafieinia; Elham Bidram; Mojtaba Yahyaabadi
Abstract
IntroductionNanotechnology involves nanomaterials that are less than 100 nm as an interdisciplinary and pioneering technology has solved many problems in the fields of agriculture. The use of iron nano-fertilizers in order to control the release of nutrients can achieve sustainable agriculture by reducing ...
Read More
IntroductionNanotechnology involves nanomaterials that are less than 100 nm as an interdisciplinary and pioneering technology has solved many problems in the fields of agriculture. The use of iron nano-fertilizers in order to control the release of nutrients can achieve sustainable agriculture by reducing the consumption of chemical fertilizers. Nano CDs (carbon dots) are a new system or carbon material between molecule and condensed solid, which gathers the characteristics of nano effect, surface functional groups and carbon elements. Therefore, it shows three basic functions of optics, chemistry and biology, and has multiple functions and applications. In addition, the abundant hydrophilic functional groups on the surface of CDs, small size and other structural characteristics made it show great advantages in promoting crop growth and enhancing photosynthesis and stress resistance. The aim of this study was to investigate the effect of iron nano carbon dot fertilizer application on vegetative growth parameters of sorghum plant in a calcareous soil.Materials and Methods Iron nano carbon dots were synthesized with lemon juice (carbon source), ethylenediamine and iron sulfate (iron source) by hydrothermal method. Coating of nanoparticles with poly lactic acid was done by co-precipitation method. Characterization of iron nano carbon-dots to confirm the successful loading of iron on the surface of carbon dots and also successful coating was done by UV-VIS, EDAX, FTIR, TEM and SEM device analyses. Some chemical properties of nanocarbon dots such as pH, electrical conductivity and salinity index were measured. Sorghum cultivation was done in the greenhouse of Isfahan agricultural and natural resources research center with a factorial design in 3 replications. The first factor was foliar spraying in three levels (distilled water, iron sulfate and no coating iron carbon dot with a concentration of 3 per thousand) and the second factor was soil application of iron carbon dot (with and no coating) in 5 levels including iron carbon dot, no coating and coated each in two levels (5 and 10 mg Fe kg-1 soil). Foliar spraying of sorghum at the eight-leaf stage was carried out by iron carbon dot and iron sulfate with a concentration of 3 parts per thousand. After the plant growth period (4 months), growth parameters such as the number of leaves, stem height, stem diameter, and fresh and dry weight of stem and leaves were measured. Also, the concentration of iron in plants and soil was also measured.Results and Discussion No coating iron nano carbon dots had 4.98% total iron and polylactic acid coated carbon dots had 1% iron. According to the successful results on carbon dots, they were confirmed with UV-VIS and FTIR devices. Based on the results of leaf number (6/60), stem height (35.52cm), stem fresh weight (24.73 g plant-1), leaf fresh weight (24.39 g plant-1), leaf dry weight (5.37 g plant-1) and the dry weight of the stem (4.73 g plant-1) was related to the interaction effect of no coating iron carbon dot soil treatment with a level of mg Fe kg-1 soil 1 with carbon dot foliar spraying (concentration 3 per thousand). The highest amount of iron in the stem (211 mg kg-1) and leaf (186 mg kg-1) is related to the carbon dot iron soil treatment with a level of 10 mg Fe kg-1 soil and the highest amount in the soil (5.92 mg kg-1). It was related to the interaction effect of iron carbon dot soil treatment coated with polylactic acid polymer (level of 10 mg Fe kg-1 soil) with carbon dot foliar spraying (concentration 3 parts per thousand).Conclusion Among the foliar treatments with iron carbon dot and ferrous sulfate heptahydrate, the treatments that were in the group of foliar treatments with nano carbon dot iron had the most positive performance. The treatment of no coating iron carbon dot and then the treatment of iron carbon dot coated with polylactic acid, with level of 10 mg Fe kg-1 soil which simultaneously applied soil and foliar application with carbon dot with concentration 3 parts per thousand showed the best performance. Therefore, these two types of synthesized nano fertilizers are suitable for sorghum cultivation and can be used as a type of iron fertilizer for agricultural purposes.Keywords: Iron nano carbon dot, nano carbon dot coating, sorghum, foliar spraying
Soil Biology, Biochemistry and Biotechnology
Elham Sadeghi; REZA GHORBANINASRABADI; Seyed Ali Reza Movahedi Naini; Mojtaba Barani Motlagh; Mostafa Khoshhal Sarmast; Mohammad Reza Pahlevan Rad
Abstract
Introduction Plant growth and crop productivity may be adversely affected under unfavorable environmental conditions, such as a lack of organic matter in the soil. To counteract the negative impacts of these challenges, a unique strategy is required. The paucity of organic inputs, which is common in ...
Read More
Introduction Plant growth and crop productivity may be adversely affected under unfavorable environmental conditions, such as a lack of organic matter in the soil. To counteract the negative impacts of these challenges, a unique strategy is required. The paucity of organic inputs, which is common in conventional agricultural production, can lead to soil degradation, erosion, and loss of soil organic matter, which are unfortunate consequences. Soil organic amendments have been shown to have beneficial effects on crop production and a wide range of soil properties in agricultural systems. However, the limited availability of phosphorus (P) in soil can significantly restrict crop growth and productivity, particularly in maize crops. Adequate P supply has been found to enhance early maturity, crop quality, and yield. However, the prolonged use of chemical fertilizers such as NPK has been found to have adverse effects on soil fertility and crop quality. As a result, the combined application of organic and chemical fertilizers has been proposed as an effective approach compared to the single application of organic or chemical fertilizer alone. Therefore, this study aimed to assess the potential benefits of using compost and Triple Super Phosphate fertilizer (TSP) application on the chemical and biological properties of soil, as well as the properties of forage maize (cv. SC704), in loess soil.Materials and Methods A factorial experiment was conducted using a completely randomized design with three replications. A total of 36 samples were performed in two separate cultivated and incubated experiments. A pot experiment was conducted to invwstigate the effects of simple and enriched compost, containing urea and Streptomyces, and varying amounts of TSP fertilizer (0, 10, 40, and 100 mg/kg), on soil properties and maize plant growth. In addition, an incubation experiment was conducted to measure the effects of the same treatments on soil microbial biomass and activity. The effect of treatments were analyzed as factorial under a completely randomized design. The biomass of maize plants was measured at the time of harvesting (the time from planting to harvesting of forage maize was 80 days). Some parameters such as available phosphorus, substrate-induced respiration, microbial biomass carbon, and some enzyme activity (acid phosphatase, alkaline phosphatase, catalase and urease) were measured in soil.Results and Discussion The findings of this study indicated that the application of compost and TSP fertilizer had significant effects on plant biomass. Specifically, compost application led to an increase in microbial biomass carbon and enzymes activity (acid phosphatase, alkaline phosphatase, catalase and urease) in the soil, ultimately promoting plant growth. Moreover, the combined application of compost and TSP fertilizer increased the availability of phosphorus, substrate-induced respiration, and microbial biomass carbon in the soil. Based on the findings, the combined application of TSP and compost resulted in further increases in substrate-induced respiration (63-168%), microbial biomass carbon (72-167%), available phosphorus (29-103%), and enzyme activity (acid phosphatase (4-21), alkaline phosphatase (14-34%), catalase (13-32%), and urease(54-159%)) compared to the application of each amendment alone. This suggests that the addition of both TSP and compost promotes the availability of easily accessible nutrients for microbial growth and soil enzymes (acid phosphatase, alkaline phosphatase, catalase and urease) activity. The highest amount of available phosphorus, microbial biomass carbon, substrate-induced respiration, catalase activity and urease activity in cultivated soil (23%, 270%, 93%, 68%, 1.8%, respectively) and incubated soil (18%, 243%, 90%, 53%, 1.2%, respectively) were observed in C2P3 treatment. The results also indicated that the enriched compost+TSP treatment led to the highest substrate-induced respiration and microbial biomass carbon, followed by simple compost+TSP, enriched compost only, simple compost only, TSP fertilizer only, and the control. The increase in enzyme activity (P<0.01, r=0.90), and available phosphorus (P<0.01, r=0.60) in the soil positively influenced plant growth. Specifically, the simultaneous application of compost and TSP had a greater effect on maize plant biomass. The highest root biomass (2.80 g), stem biomass (10.4 g), and leaf biomass (2.27 g) were observed in the enriched compost and 100 mg kg-1 TSP treatment, which differed significantly from the other treatments.Conclusion The results of this study demonstrated that the addition of compost and TSP to loess soils can promote microbial biomass carbon, substrate-induced respiration, enzyme activity (acid phosphatase, alkaline phosphatase, catalase, and urease), available phosphorus, and maize plant growth. Moreover, the use of compost can protect soil microbial and enzymatic activities in loess soils. Thus, the simultaneous application of enriched compost with TSP can reduce the use of chemical fertilizers and their negative environmental impacts.
Plant Nutrition, Soil Fertility and Fertilizers
Mehri Bazi abdoli; M Barani; abdolamir Bosatni; Taleb Nazari
Abstract
Introduction Various biomass sources such as crop residues have been proposed as feedstock for biochar production . Meanwhile, a large quantity of crop residues (rice) is produced as waste and they are either burnt or piled and abandoned at some locations in the fields. Burning of crop residues is resulting ...
Read More
Introduction Various biomass sources such as crop residues have been proposed as feedstock for biochar production . Meanwhile, a large quantity of crop residues (rice) is produced as waste and they are either burnt or piled and abandoned at some locations in the fields. Burning of crop residues is resulting in substantial loss of nutrients, and may lead to air pollution and human health problems . An alternative approach is to apply crop residues to soil in the form of biochar. Bioavailability of nutrients exclusively micronutrients (Fe, Zn) isa serious problem in soils having high pH which ends in crops yield to decline and ultimately can lead to malnutrition in humans. The biochar modification with acid may increase the solubility of nutrients (P, , Fe, Zn, Cu,,Mn) present in biochar, thereby significant improvement in mineral nutrition of plants grown in calcareous soils. In the other hand, One of the ways to use and exploit saline lands is to use salinity-tolerant cultivars, such as the Quinoa (Chenopodium quinoa) plant. It is known that biochar increases soil pH, which may result in less availability of phosphorus and other micronutrients, such as Fe, Zn, and Mn, in alkaline and calcareous soils. Therefore, modifying biochar with acids can increase the availability of nutrients in biochar for different plants grown in calcareous soils. The objection of this study is to investigate the effect of normal biochar and acid-modified biochar from rice residues on the yield and yield components of quinoa plants (Gizavan number) in a calcareous soil affected by salt.Materials and Methods The soil used in the study was collected from 0-30 cm depth which passed through via 2-mm sieve after air-drying and its chemical and physical properties were determined. To achieve the aim of this study, the factorial experiment was carried out in a completely randomized design in 4 replications. Factors include 3 types of rice biochar (unmodified, modified by pre-acidic method and modified by post-acidic method) and different levels of biochar (0, 2, and 5% by weight). Then 10 quinoa seeds were planted in each pot at 2 cm depth which after the plant emerging and greening declined to 3 plants in each pot. The pots were randomly moved twice a week during growth to eliminate environmental effects. Irrigation and weeding operations were done by hand. After the end of the growth period (187 days), the plants were harvested. So vegetative growth parameters and yield components including shoots fresh and dry weight, plant height, stem diameter, panicle length, number of leaves, number of lateral branches, and 1000 grain weight were measured and then biological yield and harvest index were determined. The statistical results of the data were analyzed using SAS software (9.4) and the LSD test (at 5% level) was used for comparing the mean values.Results and Discussion As a result of adding biochar to soil, it becomes alkaline. Chemical modification of biochar using strong acids can reduce soil pH and improve the fertility of calcareous soils and increase vegetative parameters and yield components of quinoa. Based on the obtained results, the interaction effect of different types and levels of biochar on all investigated traits was significant at the level of 1%. The results showed that the highest height, fresh and dry weight, panicle length, number of lateral branches, and stem diameter were related to the 5% post-acidic rice biochar treatment and the lowest value was related to the control treatment. furthermore, the results showed that the highest amount of plant dry weight of 8.82 gr/pot, the height of 77.50 cm, and 1000 seed weight of 17.3 gr/pot was obtained from the treatment of 5% post-acidic rice biochar, compared to the treatment of 5% Unacidified rice biochar had an increase of (81.97), (56.77), (32.17) and (7.06) percent respectively. As a result of the high dry weight of shoots and the 1000 seed weight, the 5% post-acidic rice biochar treatment provided the highest biological yield at 16.05 and harvest index at 45.03.Conclusion Under the conditions of this study, acid-modified biochars (post-acidic and pre-acidic) enhanced vegetative growth characteristics and yield components of quinoa plants in calcareous soils affected by salt. Therefore, it is recommended to prepare biochar from acidic sources or to modify it with post-acidic and pre- acidic methods.
Alireza Abdollahpour; Mojtaba Baranimotlagh; Amir Bostani; Farshad Kiani; Farhad Khormali; REZA GHORBANINASRABADI
Abstract
Introduction Globally, deforestation is the dominant land use change process and has severe effects on soil biogeochemical properties. Large areas of the north facing slopes of the Alborz mountain range in northern Iran are covered by extensive loess deposits. Loess often contain little clay results ...
Read More
Introduction Globally, deforestation is the dominant land use change process and has severe effects on soil biogeochemical properties. Large areas of the north facing slopes of the Alborz mountain range in northern Iran are covered by extensive loess deposits. Loess often contain little clay results in a loss of SOC under cultivation. Deforestation and cultivation on the loess hillslopes in northern Iran have resulted in a deterioration of soil quality, particularly significant reduction in SOC. Loess lands of Golestan province in northern Iran is densely being cultivated following deforestation. Labile fractions of soil organic matter (SOM), rather than total SOM, have been used as sensitive indicators of soils' quality and response to agricultural management changes. Several physical, chemical, and biological methods have been used to distinguish between labile (or biologically active) and recalcitrant pools of SOM. So, this research aims to investigate the effect of land use change from pristine and undisturbed forest as a reference to other land uses on soil organic carbon components and fractions as an important indicator in the sustainable soil management system and maintaining fertility and controlling soil erosion. Also, the effect of these land use changes on total carbon, soil organic carbon, and finally on the physical and chemical components of soil organic carbon.Materials and Methods The study area is the Toshan watershed, which is located in the northwest of the city of Gorgan (Golestan province) in the north of Iran. Four major and dominant types of land use were considered in the study area, including a) garden (olive), b) agricultural (cotton), c) virgin or untouched forest, d) abandoned (raspberry). Soil carbon fractionation was done by two physical methods (soil aggregate fractionation method) and chemical method (hydrolysis of organic matter with hot water). The selection of soils in different land uses was such that they have similar initial conditions and therefore the change in soil carbon in each use is related to the change in land use. The obtained data were analyzed based on the factorial design in the form of completely randomized design and using SAS software.Results and Discussion The results showed that the highest amount of total carbon and soil organic carbon was observed in the forest treatment and in the first depth (6.02% and 3.5%, respectively), which had a significant difference compared to other land use treatments studied. The results showed that despite the absence of a significant difference between the two depths, the amount of stable organic carbon increased with increasing soil depth in agricultural and abandoned uses. The forest land use had the highest amount of stable organic carbon at the depth of 0-10 cm at the rate of 2.51%, followed by garden treatment at the same depth. The lowest amount of stable organic carbon was recorded in the abandoned land use treatment. The highest amount of organic carbon dissolved in water at both investigated depths was obtained in the forest management treatments and then in the abandoned management. While no significant difference was observed between the two investigated depths in the abandoned land use. A significant decrease in organic carbon fractions that can be extracted with hot water was observed in abandoned and agricultural uses, as well as their increase in forest land uses. After the forest land use, the olive garden land use had the highest amount of total and organic carbon, however, there was no significant difference between the agricultural and abandoned treatments. In forest and garden treatments, the amount of stable carbon at a depth of 0-10 cm is significantly higher than the amount of stable organic carbon at a depth of 10-20 cm. In the garden use treatment, the amount of organic carbon in the soil at a depth of 10-20 cm showed a significant increase of 35% compared to the first depth.Conclusion A significant decrease in organic carbon fractions that can be extracted with hot water was observed in abandoned and agricultural uses, as well as their increase in forest uses. In total, the results showed that the carbon of labile fraction was more responsive to the type of land use than other fractions, and among the different methods of carbon fractionation, physical methods showed a clearer response to land use change.
Ghasem Ghorbani Nasrabadi; Esmaeil Dordipour; mojtaba Barani; Elham Malekzadeh; Abdolreza Gharanjiki
Abstract
Introduction Salinity is one of the most important environmental stresses limiting agricultural production in arid and semi-arid regions, which occupies a relatively large area of arable land. Nutrient availability is decreased in saline conditions in soil solution and plant nutrient balance is changed. ...
Read More
Introduction Salinity is one of the most important environmental stresses limiting agricultural production in arid and semi-arid regions, which occupies a relatively large area of arable land. Nutrient availability is decreased in saline conditions in soil solution and plant nutrient balance is changed. Nitrogen fertilizer management as an essential nutrient for plant growth is very important under salinity stress. Also, salicylic acid is a plant growth regulator involved in defense mechanisms of plants against biotic and abiotic stresses. Therefore, the aim of this study was to investigate the effect of salinity on the concentration of nutrients in wheat in response to salicylic acid consumption at different levels of nitrogen.Materials and Methods In order to investigate the effects of salicylic acid and nitrogen fertilizer application rates at different salinity levels on nutrient concentration of wheat cv. Morvarid, an experiment was conducted as a split plot factorial based on a randomized complete block design with four replications in the fields of Mazraeh-E-Nemooneh located in Anbarolum, Aq Qala city, Golestan province. The main factor included three soil salinity levels (3-4 below wheat tolerance threshold (control), 9-11 and 13-15 dS.m-1) and sub factors included two levels of salicylic acid (0 and 1.5 mM) and three levels of N fertilizer (from urea source, 46% N) were 1) N based on soil test recommendation, 2) 30% N more than soil test recommendation and 3) 30% N less than soil test recommendation, respectively. Salicylic acid was foliar applied twice for about 2 weeks in the tillering stage and 10 days after the second stage spraying, content in them was determined. Nitrogen treatments were applied in three stages - one third before planting with ammonium sulfate (21% N) and remains top-dressed with urea (46% N) at tillering and stem elongation stages. At the emergence stage of the cluster or the beginning of flowering of wheat, the amount of nitrogen in the flag leaf was measured. The concentrations of nitrogen, potassium and sodium in grain and straw were also measured by standard methods.Results and Discussion The results showed that by increasing salinity, the flag leaf N concentration, N and K concentration of wheat staw and seed decreased. However, Na concentration of straw and seeds increased. With increasing N and salicylic acid consumption, the concentration of N flag leaf, the seed and straw N and K concentrations increased, but the concentration of Na in seed and straw decreased.The interaction of salinity, salicylic acid and nitrogen on seed N and K concentrations and also on flag leaf N concentration was significant but there was no significant effect on other measured elements. Comparison of the mean of simple effects of salinity on the evaluated elements indicates a significant reduction of all studied elements due to salinity treatment. Also, comparison of the mean of simple effects of nitrogen fertilizer showed that all elements were affected by the treatment. The results of mean comparison showed a positive and significant effect of salicylic acid on the leaf N concentration of the flag leaf, so that the N concentration in the flag leaf in a 1.5 mM salicylic acid treatment was significantly increased compared to the non-use treatment.Conclusion according to the results, more nitrogen consumption at moderate salinity can have a positive effect on plant nutrition, and vice versa, at high salinity levels, it is better to reduce nitrogen consumption. The interactions of salicylic acid and nitrogen showed that in general nitrogen treatments with salicylic acid increased the N concentration of seed and straw. Nitrogen fertilization at higher and medium salinity levels increased the concentration of N and K in straw and seeds; However, at high salinity, less nitrogen fertilization improved the concentration of N and K. Also, nitrogen application with salicylic acid improved these traits under saline conditions. Therefore, the application of salicylic acid and nitrogen fertilizer management to some extent reduced the adverse effects of salinity up to moderate salinity levels and improved plant nutrition by increasing plant tolerance to salinity.Therefore, the application of salicylic acid and nitrogen fertilizer management to some extent reduced the adverse effects of salinity up to moderate salinity levels and improved plant nutrition by increasing plant tolerance to salinity.Key words: Salicylic acid, salinity stress, wheat, Nitrogen fertilizer management
Seyed Ameneh Ghoreishi Amiri; Mojtaba Barani motlagh; Esmaeil Dordipour
Abstract
Introduction: Focusing on population and industrial centers in the different areas has caused the formation of a huge volume of sewage which their treatment (refining) has led to produces a larger volume of sludge so that without any attention to find out the best disposal way, has created various environmental ...
Read More
Introduction: Focusing on population and industrial centers in the different areas has caused the formation of a huge volume of sewage which their treatment (refining) has led to produces a larger volume of sludge so that without any attention to find out the best disposal way, has created various environmental difficulties. One of the economic and efficient ways to use sewage sludge is utilizing them in agriculture. Sewage sludge, due to its large amount of nutrients and organic matters and being less expensive, nowadays it is widely used as a fertilizer and/or amendment of soil physical and chemical properties. In the present study, the effect of different levels of industrial sewage sludge application on the bioavailability and distribution of various forms of iron in spinach plant, Shahr Reza cultivar was evaluated.Materials and Methods: Soil was collected from 0-30 cm depth around Aq Qala industrial town. After air drying, the soil was passed a 2 mm sieve and its physical and chemical properties measured. For this purpose, a completely randomized design with different levels of industrial wastewater sludge (0, 22.5, 45, 90, 180 and 360 ton/ha) was conducted in the form of a pot experiment with 4 replicates in greenhouse of research center of Gorgan Agricultural and Natural Resources Research. The experimental units were pots of 7 kg soil. Then, 20 seeds per pot were planted at 2 cm depth of soil and after two weeks of emergence, the number of shrubs was reduced to 5 plants per pot. Irrigation and weeding were done manually. After the end of the growth period (90 days), the plant samples were digested by dry-digesting method. The concentration of iron in the samples was determined by atomic absorption device (AAS-Unicam-919). Immediately after harvesting, the soil of pots was air-dried and passed through a 2 mm sieve. Then the amount of soil extractable iron by DTPA was read by the atomic absorption device. In addition, Tessier et al. (1979) method was used to investigate the distribution of different forms of iron after sludge application. Statistical analysis of the test data was performed using SAS software and LSD test (5%) was used to compare the means. Also, Graphs were plotted using Excel software.Results and Discussion: The results showed that concentration of iron in the soil and aerial parts of spinach was significantly affected by the sewage sludge application. The highest dry weight of the spinach aerial part with an average of 5.89 g/plant was related to 90 tons/ha sludge treatment and the lowest with an average of 1.07 g/plant was related to the control treatment. Although the application of sludge at high levels such as 180 and 360 t. ha-1 led to a reduction spinach yield, this seems to be due to sludge effects such as the presence of heavy metals, disturbance of soil C/N equilibrium, and especially increase soil salinity. The concentration of iron in spinach aerial parts increased linearly in 22.5, 45, 90, 180, 360 ton/ha sludge treatments, which had an increase of 3.19, 5.16, 12.04, 26.06 and 52.76 percent compared to the control treatment, respectively, while the highest amount of iron uptake with an average of 767.47 mg/kg dry matter obtained in 90 ton/ha sludge treatment and the lowest amount with an average of 124.43 mg/kg dry matter was related to control treatment. The average of iron uptake in the aerial parts of spinach in 180 and 360 t/ha sludge treatments, respectively, was 735.93 and 341.08 mg/kg dry matter, which was 4.28% and 125% lower than 90 t/ha treatment, respectively. The results also showed that application of 360 t/ha sewage sludge increased 73.48% DTPA extractable iron compared to the control treatment. The results of iron fractionation showed that the amounts of all iron components in the soil (except iron and manganese oxides) increased by application of sewage sludge. In the control soil, different iron components were as follows: exchangeable> carbonate> organic> iron and manganese oxides> residual. By applying treatments, the order did not change except that after application of treatments, in all components of iron (except iron and manganese oxides) showed an increase in the amount of each component compared to the control treatment. The correlation between the chemical forms of iron with DTPA-extractable iron and iron concentration of spinach showed that between iron concentration in spinach and extractable iron with DTPA (r= 0.93), exchangeable iron (r= 0.95) and iron bound to the organic fraction (r= 0.98) had a significant and positive correlation at the 1% level and with iron bond to iron and manganese oxides (r= 0.98) had a significant and negative correlation at 1% level which may indicate the role of these forms of iron (DTPA-extractable iron, exchangeable iron and organic-bound iron) in the nutrition of spinach (Spinacia oleracea L.). Increased Fe concentration in plant organs by sewage sludge application may be due to increased concentration of elements in soil and consequently higher uptake of this element by plant.Conclusion: In general, it can be concluded that the application of sewage sludge in high amounts of 180 and 360 ton/ha with the effect on physical and chemical properties of soils such as disturbance of nutrient balance and increasing soil salinity causes a decrease in plant dry weight and the ability of iron uptake in the spinach plant. However, sewage sludge application provides nutrients for plant growth and reduces the economic cost of disposal. However, it is recommended to determine the threshold of toxicity and salinity before application of sewage sludge depending on soil, plant and environmental conditions. More extensive research is also needed to standardize the method and relative amounts of use of this organic amendment.
T. Nazari; M. Baranimotlgh; E. Dordipour; R. Ghorbani nasrabadi; S. Sefidgar Shahkolaee
Abstract
Introduction One of the most important needs in crop planning is the evaluation of different systems of plant nutrition. plant nutrition in a correct way can preserve the environment and increase efficiency of agricultural inputs. Humic acid contains many nutrients that increase the soil fertility and ...
Read More
Introduction One of the most important needs in crop planning is the evaluation of different systems of plant nutrition. plant nutrition in a correct way can preserve the environment and increase efficiency of agricultural inputs. Humic acid contains many nutrients that increase the soil fertility and soil organic matter content and thus affect plant growth and yield. In the present study, the effect of soil and foliar application as well as fertigation application of humic acid on iron and phosphorous availability of canola (Hyola 308) was evaluated. Materials and Methods The soil was air-dried and ground to pass through a 2-mm sieve and then was analyzed to determine soil physical and chemical properties using standard methods. A greenhouse experiment was carried out with 10 treatments in four replications. Treatments include humic acid soil application at three levels (1, 2 and 4 g.kg-1 soil), foliar application at three levels (0.1, 0.2 and 0.4%) and three fertigation levels (1000, 2000 and 4000 mg L-1) and control). Soil application in the form of humic acid powder and in cropping time based on the soil weight of the pots and for spraying and use along with irrigation water, each of the spraying and together with irrigation water levels is divided into three equal parts and in three stages (plant establishment, stem elongation and flowering). At the end of growth period (for 139 days), vegetative growth indices were determined and then plants were harvested and stem and leaves were separated. Phosphorous content in plant extracts was measured by molybdate vanadate method (yellow method) and iron concentration in the samples was determined by atomic absorption (AAS-Unicam-919). Statistical analysis was conducted via SAS software and mean comparisons carried out by LSD test at 5% probability level. Results and Discussion Results show that the application methods and the different levels of humic acid had significant impacts (p < 0.01) on the all parameters but they had no significant effects on the numbers of leaves. The maximum leaf fresh weight was 4.34 gr per plant which obtained water irrigated treatments with 2000 mg/lit. However, there was no significant difference between water irrigation with 4000 and 2000 mg/lit humic acid concentrations. Besides, maximum leaf dry weight was 0.37 gr in the plant that was water irrigated with 4000 mg/lit, however there was no significant difference between water irrigation with 4000 and 2000 mg/lit humic acid concentrations. Also, the maximum stem dry and fresh weight was 5.92 and 1.53 gr which observed in water irrigated with 2000 mg/lit. The application methods and the different levels of humic acid had significant impact (p<0.01) on the content and absorption of Fe and P excluding the Fe content in the root. The maximum Fe content in stem and seed were 321.25 and 85 mg/kg was observed in the treatment of humic acid with water irrigation of 2000 mg/lit. Also, in the treatment of spraying with 0.4 % of humic acid, the maximum of Fe concentration (245.46 mg/kg) was obtained. The humic acid molecules can pass from the cell membranes and cause iron reduction in the Apoplast and increase the availability of Fe. Because of the reduction effect of humic acid on the availability and accumulation of Fe in the plant tissue, increasing in the Fe absorption with humic acid treatment is observed. The increase in the accumulation of Fe by humic material might be due to the releasing phenolic material in the root rhizosphere. The maximum P concentration in the leaf, stem and seed were 0.40, 0.72 and 0.897 respectively that was observed in the treatment of water irrigation with 2000 mg/lit with humic acid. Due to the availability of phosphorus and other nutrients for wheat, humic acid increases the plant yield in the reproductive stage of seeding. Conclusion Results of the study show that humic acid can ameliorate the negative effect of a large amount of phosphorus on iron availability. In fact, humic acid, due to providing nutritional balance for the plant, prevents negative effects caused by the high amounts of specific elements such as phosphorus. Also, the results showed that all three humic acid application methods increased vegetative growth parameters, and iron and phosphate availability for canola plant compared to control. But in general, 2000 mg/L acid humic with irrigation water was more effective than two methods of soil and foliar application.
Soil Chemistry and Pollution
Narges sousaraeS; Mojtaba Baranimotlagh; Farhad Khormali; Esmaeil Dordipour
Abstract
Introduction Biochar is a charcoal, pyrolyzed from a wide range of carbon-rich biomass materials, such as crop and wood residues, animal manures and a range of industrial wastes and once added into soil, it can store the soil carbon for a long period, improve the soil structure and increase the crop ...
Read More
Introduction Biochar is a charcoal, pyrolyzed from a wide range of carbon-rich biomass materials, such as crop and wood residues, animal manures and a range of industrial wastes and once added into soil, it can store the soil carbon for a long period, improve the soil structure and increase the crop yield. However, the physical and chemical characteristics of biochars are influenced by the properties of the feedstock and pyrolysis conditions, such as highest temperature treatment and furnace residence time. Considering the large variation in biochar properties, it is not surprising that crop yields vary with different biochars. We investigated the effects of biochars on corn growth in the greenhouse. The specific objectives were (a) to assess whether feedstock properties or pyrolysis temperature are important in preparing of biochar and (b) to quantify the effects of varying biochar characteristics on corn growth and chlorophyll index in a calcareous soil under greenhouse condition. Materials and Methods Biochar was produced from crop residues including rice, cotton and canola. Feedstock was oven-dried before pyrolysis. The pyrolysis process was conducted for 1 h at 10°C min‒1 heating rate to produce biochars at different temperatures of 350 and 700 oC under oxygen-limited conditions. All biochars were ground and passed through a 2-mm sieve before experimentation. Ash content and char yield was calculated and biochar pH and electrical conductivity (EC) were measured using 1:20 solid: solution ratio. The soil used in this experiment was taken from the Research Farm of Gorgan University of Agricultural Sciences and Natural Resources. The soil was air-dried and ground to pass through a 2-mm sieve then analyzed for various soil physico-chemical properties using standard methods. A greenhouse experiment was set up using pots with 5 kg prepared soil. Various treatments comprising of 3 biochars type produced at different pyrolysis temperatures (350 and 700°C) from three crop residues (rice, cotton and canola) at three application rates (0, 2 and 5% w/w). A completely randomized design was used in factorial arrangement and treatments were replicated four times. After the soil had been prepared and biochar added, six seeds of maize were planted approximately 20 mm deep in the center of the pots and thinning to seedlings of four plants pot‒1 was done at plant establishment. Distilled water was used to maintain moisture contents of the soil in all the pots during the experimental period. Plant stem and leaves were harvested 96 days after planting. Washed with distilled water then dried with tissue paper. The leaf and stem samples were air-dried and then oven dried at 65˚C to a constant weight in a forced air driven oven. The studied traits included leaf and stem fresh and dry weight, plant height, number of leaves, time to first flowering, chlorophyll index (SPAD), concentration of chlorophyll a, chlorophyll b and total chlorophyll. The analysis of variance (ANOVA) with the factors biochar type, application rate and pyrolysis temperature were performed using a completely randomized design. Significantly different treatment means were separated using least significant difference (LSD) test at PResults and Discussion The results showed that pyrolysis temperature significantly influenced the measured chemical properties of biochars. EC values were tended to increase with pyrolysis temperature. The pH of the biochars was also influenced by temperature. Biochars pH ranged from 6.8 to 9.6. The pH of the biochars was increased with increasing temperature and highest pH (9.6) was observed at 700°C of rice residues. These increases in pH values are mainly due to separating of alkali salts from organic materials by increased pyrolysis temperature. The results showed that the yield of biochars was reduced by increasing pyrolysis temperature and ranged from 19.4% to 40.1%. This decline in yield content is mainly due to the destruction of some compounds such as cellulose and hemicellulose as well as combustion of organic materials with increased pyrolysis temperature. By contrast to biochar yield, the biochar ash content increased with increasing pyrolysis temperature. The lowest values of leaf and stem fresh and dry weight was observed at 700°C of canola residues. These results suggest that biochar produced at high pyrolysis temperature (especially at 700°C), when applied to the soil, may increase soil salinity and subsequently provide undesirable impacts on the plant growth. It has been reported that the negative impacts of high salinity on the plant growth could be due to the following reasons: (1) the low osmotic potential of the soil solution, resulting in water stress, (2) specific ion effects, resulting in salt stress, and (3) nutrient imbalances. Addition of each three types of biochars caused a significant increase in chlorophyll concentration compared to control. Conclusion The type of feedstock material is an important factor that determines the final application of the biochar and its effect on plant growth papameters. Therefore, there is further need for research focusing on the effects of biochar addition on soil properties and plant growth in order to assess biochar as a valuable resource for agriculture.
Plant Nutrition, Soil Fertility and Fertilizers
Elham Mirparizi; Mojtaba Barani motlagh; Alireza Movahedi; REZA GHORBANINASRABADI; Somayeh Bakhtiary
Abstract
Introduction: Among the micronutrients required by plants, iron deficiency has the maximum limitation for agricultural crops. Iron plays an important role in synthesis of chlorophyll, energy transfer in plants, formation and synthesis of special enzymes, and fixation of nitrogen. Deficiency of iron in ...
Read More
Introduction: Among the micronutrients required by plants, iron deficiency has the maximum limitation for agricultural crops. Iron plays an important role in synthesis of chlorophyll, energy transfer in plants, formation and synthesis of special enzymes, and fixation of nitrogen. Deficiency of iron in plants causes chlorosis or yellowing of young leaves. Iron deficiency is developed due to imbalance of metal ions including copper and manganese, large phosphorus in soil, poor aeration, low temperatures, soil iron deficiency, low organic content, and high concentration of bicarbonate in the root environment. To solve the problem of iron deficiency in plants, very expensive methods are used. Usage of solid wastes of copper melting factories such as slag as soil modifying materials can be useful in iron nutrition. The possibility of using reverb furnace slag of Sarcheshmeh Copper complex as an iron fertilizer was examined in a calcareous soil. Since copper slag contain considerable amount of iron (53.8% iron oxides), therefore, its proper management can solve the problem of iron deficiency in calcareous soils. Materials and Methods: To investigate the effect of copper slag and organic compounds on iron availability and growth of Sorghum plant, (Speed Feed cultivar), a soil sample was harvested with low soil absorbable iron and organic compound. After air-drying, the soil samples were passed through a 2-mm sieve. Some physiochemical properties of the soil sample used, organic compounds, and the slag were characterized by typical experimental methods. The experimental design was performed as a factorial experiment (copper slag and organic compounds) in a completely randomized design with three replicates. The experimental treatments included five levels of organic compound (pistachio shell and cow manure at two levels of 2% , 4% and the control sample) and 10 levels of iron (copper slag, copper slag with sulfur, copper slag with sulfur and thiobacillus, acidic slag (each at two levels), Fe-EDDHA, and control sample). The experimental treatments were incubated for 3 months. Treatments were then applied to 3 kg samples of soils and the treated samples were incubated in plastic containers at field capacity (FC) moisture content for up to 90 days. At the end of incubation period, 10 sorghum seeds were cultivated in each pot. Foliar application of Fe-EDTA with a concentration of 5 ppm in addition to the mentioned treatments. Harvesting sorghum shoot was performed 90 days after the cultivation. The plant samples were dried for 48 h at 70°C. After digestion of the plant samples by wet oxidation method, concentration of iron, zinc, nickel and cobalt were measured by atomic absorption spectrophotometer. Soil samples were also taken from the pots. After being air-dried, the soil samples were passed through a 2-mm sieve. Amount of electrical conductivity, soluble sodium, concentration of calcium and magnesium as well as iron, zinc, nickel, and cobalt were measured. All statistical analyses were performed using SAS software. Means of different treatments were compared using LSD (P ≤0.05) test.Results and Discussion: Application of acidic slag increased the soluble sodium and sodium absorption ratio and decreased the soil absorbable iron content. Application of 4 times critical level as slag (S4) increased iron and zinc absorbable by soil, as well as increased concentration of the plant iron. The copper slag with sulfur and thiobacillus developed the maximum absorbable zinc in soil. Comparison of the organic compounds indicated that cow manure has a greater influence on the amount of absorbable iron in soil, iron concentration and uptake by the plant than pistachio shell. On the other hand, with reduction of the concentration of heavy metals, its application is recommended in comparison with pistachio shell. The content of zinc, nickel, and cobalt in the studied plant did not exceed the toxicity level. Heavy metals have low mobility in the soil and are often stabilized by soil colloids or precipitate as different compounds. For this reason, their mobility and transference to shoot diminish. Conclusion: The slag from copper melting has micro nutrient including iron and zinc. Therefore, it can be concluded that the copper slag has the potential of a source supplying elements for plants. These results confirm the lack of use of acidic treatments. In addition of iron and zinc availability for plants, measurement of other heavy metals in the plant showed that the concentration of measured heavy metals was below their toxicity level. Therefore, suitability of this compound for agriculture will be confirmed. Since addition of heavy metals to soil has various environmental effects, thus repetitive use of slag and its use in large amounts are not recommended. As in absorption of nutrients, immobility in soil, stabilization of metal in the root, and preventing its transference to shoot organs are among the mechanisms of plant when exposed to high concentration of heavy metals, it is suggested that the amount of heavy metals be studied in the root.
Micromorphology and Clay mineralogy
masoomeh najafinia; Fashad Kiani; mojtaba Baranimotlagh
Abstract
Introduction Loess sediments of northern Iran represent several cycles of climate change and evolution of the landform for the mid-to-late Quaternary. Climate change in elevations of Iran and its surrounding areas is very controversial in the mid and late Quaternary, and has been discussed in the past ...
Read More
Introduction Loess sediments of northern Iran represent several cycles of climate change and evolution of the landform for the mid-to-late Quaternary. Climate change in elevations of Iran and its surrounding areas is very controversial in the mid and late Quaternary, and has been discussed in the past according to rainfall and rainfall periods and between rainfall, glacial and inter-glacial. Paleomegnatic results also indicate that these sediments have accumulated between, 1.8 to 2.4 million years ago. However, pedogenic processes and the effects of past climate in these soils still have not been fully investigated. The loess deposits in northern Iran are a valuable archive of regional paleoclimatic and paleoenvironmental information. Extensive sedimentological and chronological studies have been carried out on the middle to upper Pleistocene loess during the past decades, but it is necessary to do a comparative research on the older loess deposits. So, this study aimed to conduct a mineralogical and physicochemical investigation on the early Pleistocene loess and to compare it with modern loess soils in Agh-Band, Yelli-Badrag and Qareh-Agach in loess plateau of eastern Golestan. Materials and Methods The study area is located in a hot and dry climate in loess Plateau east Golestan. According to the previous studies, a total of six profiles were excavated and studied. Then, physicochemical properties such as soil texture, acidity (pH), electrical conductivity (EC), saturation moisture (SP), organic carbon (OM), cationic exchange capacity (CEC) and calcium carbonate equivalent (CCE) were measured in the laboratory. Clay separation was carried out with a specific method to separate the clay as well as identification of clay minerals. After preliminary field observations and determining the horizons for each profile in the region, soil classification was done based on soil taxonomy and WRB. Then, soil samples were prepared from each horizon for physicochemical and mineralogical studies in sufficient quantities. Results and Discussion Comparing the results of physicochemical properties (such as color, lime percentage, the cation exchange capacity and the ratio of iron, etc.) in paleosol and modern loess soils indicates that in paleosol soils, soil forming processes have passed several stages. Clay mineralogy is a good indicator for past climate change studies in loess.The existence of the arglic horizons and the evolved calcic in paleosols and their absence, in comparison with the modern soils in which they are present, indicate the change in soil formation conditions. The change in the color of paleosols also represents the soil moisture and the more suitable conditions of the past climate (temperature, and especially rainfall) in comparison with the present climate of the region, this color change was due to activation of soil formation processes in paleosols. All paleosol samples had a higher clay content than the late modern loess soils of the Pleistocene, suggesting favorable climatic conditions for soil formation processes and the development of more ancient soil than parent materials. Decrease in the amount of annual precipitation in the region, compared to the past, has led to decreased smectit and increased chlorite. Therefore, presence of smectit cannot be attributed to the present situation of the region. The presence of these clay minerals in paleosols can be due to wet weather conditions as well as weathering of clay mineral deposits. On the other hand, the dominance of less weathered clay minerals such as illite and chlorite in the late Pleistocene modern loess soils is correlated with the present dry climatic conditions. Conclusion The simultaneous presence of modern and old loess soils in the studied areas demonstrates the general evolution of geographical and climatic conditions during the Pleistocene period which has altered the properties of these layers and ultimately left out the effects of high clay conditions, which is a combination of climatic evidence and intermittent pedogenic soil formation processes. The presence of early Pleistocene loess soils between late Pleistocene loess sediments in Golestan province and the conditions of the study provided pedological and mineralogical comparisons of modern and paleosols in these areas and the results clarified a part of the climate change in northern Iran. The past climate study allows for prediction of the current and future climate change process. Therefore, a more accurate study of clay minerals as the key to all soil behaviors and past climate change in different parts of the eastern Golestan plateau can be very useful in completing studies of evidence of past climate change in paleosol soils
Soil Chemistry and Pollution
Somayeh Sefidgar shahkolaie; Mojtaba Baranimotlagh; Farhad Khormali; Esmael Dordipour
Abstract
Introduction At present, contamination of water and soil resources is an important environmental challenge. Therefore, decontamination of such is a prerequirement for using these resources. Cadmium (Cd) and lead (Pb) often coexist in contaminated soils and there is currently no effective means for their ...
Read More
Introduction At present, contamination of water and soil resources is an important environmental challenge. Therefore, decontamination of such is a prerequirement for using these resources. Cadmium (Cd) and lead (Pb) often coexist in contaminated soils and there is currently no effective means for their concurrent removal. Concerns about their mobility and bioavailability have increased because of food safety, potential health risks and its detrimental effects on the ecosystems. The stabilization/solidification is a cost effective remediation method that prevents spreading of heavy metals in soil and water resources. In this process, contaminated soil reacts with amendments such as organic and liming materials to form low soluble or non-soluble stable materials. The objective of this study was to evaluate the effect of several low cost amendments on Cd and Pb stabilization by a sequential extraction method. Materials and Methods In this research, in order to investigate the effect of organic amendments (biochar 640°C, and biochar 420°C) and inorganic amendments (Pumice, Leca, Zeolite, and Bentonite) on Pb and Cd stabilization in a contaminated soil, an incubation experiment was carried out. One kilogram of each amended soil and the control soil were packed into respective pots. Soils were amended in the laboratory using biochar 640 (BI1), biochar 420 (BI2) bentonite (BE), pumice (P), leca (LE), and zeolite (Z). A control treatment (C) without adding amendment was also prepared. The amendment materials were applied at 1 and 5 percent wt. Each treatment was performed in three replicates and the samples were incubated in the dark at 14°C for 6 months. At the end of the incubation time, the potential bioavailability of Cd in non-amended and amended soils was evaluated by extraction with DTPA and ethylenediamine tetraacetic acid (EDTA). Total Cd (CdT) and Pb (PbT) was extracted by aqua regia (HNO3 + HCl) extraction. The chemical fractions of Cd and Pb were determined by a sequential extraction method which is a five-step chemical fractionation based on the work of Tessier et al. (1979). All statistical analyses were performed using SAS software. Means of different treatments were compared using LSD (P ≤0.05) test. Results and Discussion The results indicated that the additions of amendments to soils reduced the concentration of DTPA and EDTA-extracted Pb and Cd. The smallest concentration of Pb-extracted DTPA and EDTA was observed in organic amendments treated soil (biochar 640°C, and biochar 420°C) and treated with 5% biochar 640°C, respectively. The high sorbent capacity of the BI used in this study could be due to its high pH, high content of organic carbon and cation exchange capacity (CEC). The highest decreasing rate of DTPA and EDTA-extractable of Cd was observed in treated with 5% pumice and zeolite, respectively. Application of the amendments (except for 1% LE) decreased exchangeable fraction (F1) of Pb compared to the non-amended soil. Also, the amendments (except for 1% P, Z and BE) decreased exchangeable fraction (F1) of Cd compared to the non-amended soil. Although the biochar 640 (5%) showed the highest decreasing rate of exchangeable fraction (F1) of Pb and Cd, they increased the oxide (F3) and organic (F4) fractions, which might be due to its rich O-containing functional groups and high alkalinity leading to an increase in the binding of Cd and Pb to organic compounds and mineral oxides. Conclusion Results indicated that application of amendments was successful in lowering the potential bioavailability of Pb and Cd soils. The 5% biochar 640 treatment had the greatest decrease in extractable Pb. Also, the 5% zeolite and pumice treatment had the greatest decrease in extractable Cd. Application of BI resulted in a significant decrease in both Pb and Cd exchangeable fraction (F1). This reduction in the exchangeable fraction (F1) of Cd and Pb in the soil was due to an increase in the fraction of heavy metals bound to the soil organic matter (F4) oxides (F3) after BI addition. Enhanced precipitation or co-precipitation and complexation of metals with amendments led to the reduction of the solubility of the metals. The P, LE, BE, and Z altered the exchangeable fraction (F1) of Cd and Pb to the oxide fraction (F3) and the carbonate fraction (F3), respectively. Application of BI amendment causes the highest decreasing rate of solubility Cd and Pb, suggesting this as the suitable amendment for the remediation of Cd and Pb in contaminated soils.
Micromorphology and Clay mineralogy
masoomeh najafinia; Farhad Khormali; Farshad Kiani; mojtaba Baranimotlagh
Abstract
Introduction Loess sediments of northern Iran represent several cycles of climate change and evolution of the landform for the mid-to-late Quaternary. Climate change in elevations of Iran and its surrounding areas is very controversial in the mid and late Quaternary, and has been discussed in the past ...
Read More
Introduction Loess sediments of northern Iran represent several cycles of climate change and evolution of the landform for the mid-to-late Quaternary. Climate change in elevations of Iran and its surrounding areas is very controversial in the mid and late Quaternary, and has been discussed in the past according to rainfall and rainfall periods and between rainfall, glacial and inter-glacial. Paleomegnatic results also indicate that Early Pliestocene loess (Reddish loess) have accumulated between, 1.8 to 2.4 million years ago. However, pedogenic processes and the effects of past climate in these soils still have not been fully investigated. The loess deposits in northern Iran are a valuable archive of regional paleoclimatic and paleoenvironmental information. Micromorphology is an important technique to identify and interpret the loess- paleosol for paleoclimate studies. Microscopy is a method of studying undisturbed soil samples with the help of microscopic techniques (and sometimes with ultramicroscopic ones), in order to identify their constituents, determine their mutual relations in space and time and interpret their formation conditions. Micromorphology uses these characteristics to make interpretations, generally on the soil formation processes. This study aimed to conduct a micromorphological investigation on the early Pleistocene loess and to compare it with the modern loess derived soils in Agh-Band, Yelli-Badrag and Qareh-Agach in loess plateau of eastern Golestan. Materials and Methods The study area is located in semiarid climate in loess Plateau east Golestan. Six profiles were selected and studied. Physicochemical properties such as soil texture, acidity (pH), electrical conductivity (EC), saturation moisture (SP), organic carbon (OM), cationic exchange capacity (CEC) and calcium carbonate equivalent (CCE) were measured in the laboratory. Then, soil samples were prepared from each horizon for micromorphology studies. For micromorphological studies, thin sections were prepared from undisturbed, oriented and dry clods by standard methods and described under a polarizing optical microscope. Results and Discussion Comparing the results of physicochemical properties (such as color, carbonate percentage, the cation exchange capacity, etc.) in paleosol and modern loess soils indicates that the in paleosols, soil forming processes have passed several stages. The existence of the argillic horizons and the evolved calcic in paleosols and their absence in the modern soils in which they are present, indicates the change in soil formation conditions. The change in the color of paleosols also represents the soil moisture and the more suitable conditions of the past climate (temperature, and especially rainfall) in comparison with the present climate of the region. This color change was due to activation of soil formation processes in paleosols. All paleosol samples had a higher clay content than the late modern loess soils of the Pleistocene, suggesting favorable climatic conditions for soil formation processes and the development of more ancient soil than parent materials. Reducing annual precipitation decrease soil pedogenesis. Conclusion Comparison of the results obtained from paleosols of early Pleistocene with modern soils indicates that the time and climate change caused alterations in the soil micromorphology features (such as the type and amount of pores, soil structure and b-fabric and pedofeatures etc.). One of the most important pedofeatures was clay coating around void, presented only in buried paleosols, which is the evidence for moist climate conditions and subsequently enough leaching for clay translocation. Further, the presence of planar void caused by shrink and swell of clay is evidence for evolution in the paleosols. In argillic horizons of paleosols, dominant b-fabric is speckled due to carbonate leaching while in calcite horizon, it is crystallitic b-fabric. The micromorphological index of soil development calculated, showed that these red-colored deposits are formed under an annual precipitation of about 450- 650mm which represents more humid conditions at the time of their formation than the modern loess soils. In modern soils derived from recent loess, lack of clay coating can be a reason for weakly developed soil formation.
Plant Nutrition, Soil Fertility and Fertilizers
Esmaeil Dordipour; Zeinab Bastamikojour; Mojtaba Baranimotlagh; Abdolreza Gharanjiki; Mohsen Olamaee
Abstract
Introduction The most important constraint in maize crop yield in developing contries worldwide, and especially among resource-poor farmers, is soil infertility. Therefore, maintaining soil quality can reduce the problems of land degradation that decreases soil fertility and rapidly declining production ...
Read More
Introduction The most important constraint in maize crop yield in developing contries worldwide, and especially among resource-poor farmers, is soil infertility. Therefore, maintaining soil quality can reduce the problems of land degradation that decreases soil fertility and rapidly declining production levels that occur in large parts of the world which needing the basic principles of good farming practice. For optimum plant growth, nutrients must be available in sufficient and balanced quantities. After nitrogen, phosphorus is the most limiting nutrient for crop yields, and is essential for maize growth and development. Large quantities of chemical fertilizers are used to replenish soil N and P, resulting in high costs and severe environmental contamination. Maize quantity and quality are increased by utilization of fertilizers, which has become the most important objective of these products worldwide. Phosphorus, is the second most important macronutrient required by the plants, next to nitrogen, and is reported to be a critical factor of many crop production systems due to its limited availability in soluble forms in the soils. The low availability of P to plants is because the vast majority of soil P is found in insoluble forms, and plants can only absorb P in two soluble forms, the monobasic (H2PO4-) and the dibasic (HPO42-) ions. Crop plants can therefore utilize only a fraction of applied phosphorus, which ultimately results in poor crop performance. To rectify this and to maintain soil fertility status, frequent application of chemical fertilizers is needed, though it is found to be a costly affair and also environmentally undesirable. Moreover, phosphorus (P) is an essential nutrientionl element for plant growth. Calcareous soils are frequently characterized by the low availability of P for plant uptake due to the low solubility of P compounds present in soils at high pH and the formation of relatively insoluble complexes, e.g., Ca-P. Many soils in Iran have received large amounts of P fertilizer and consequently contained a high level of available P. On the other hand, the root exudation of organic acids has been suggested to increase P availability in calcareous soils. The most common low-molecularweight organic acids (LMWOAs) identified in soils include oxalic, succinic, tartaric, fumaric, malic, and citric acids and are derived from the decomposition of soil organic matter in the upper soil horizons, microbial metabolites, canopy drip, and root exudation. The concentrations of organic acids in the rhizosphere or in soil solutions vary greatly and range from 10-2μM to over 80 mM. The ability of organic acids to release inorganic anions, such as P, has been reported and has been attributed to desorption of inorganic anions and solubilization of phosphate compounds. LMWOAs and their corresponding anions play a very important role to increase P bioavailability. Many studies have been conducted about the role of organic acids in increasing P availability, but these studies focused on acid soils in which Fe- or Al-bound P is the main P fraction. For calcareous soils where Ca-bound P is the main P fraction, questions that whether organic acids can mobilize P or not still exist. Although, a number of results show that addition of organic acids, especially citric and oxalic acids to soils can solubilize significant quantities of fixed P and reduce the sorption of newly applied fertilizer P. However, there are few studies on the transformations of P fractions induced by organic acids or organic anions, which are important for understanding the mobilization mechanisms of P and for exploring better ways of using different forms of P in soils. The objective of this study is to examine the effects of some organic acids and anions on the solubilization and plant uptake of soil P in some calcareous soils of Golestan province, Iran. Material and Methods For this purpose, a factorial pot experiment in a completely randomized design with three replications was conducted on maize. The first factor was comprised of 6 soil types from various areas of the province and the second factor was consisted of a combination of phosphorus fertilizer and organic acids (1) control, (2) 50 mg P kg-1, (3 and 4) 50 mmol kg-1 of organic acids (oxalic and malic acids), (5) P + oxalic acid and, (6) tomato fruit residue (25% w). After 10 weeks, plants were harvested and the parameters such as plant height, fresh and dry weights, phosphorus concentration and its uptake were determined. Results and Discussion Results indicated that soil type effect was statistically significant on the plant fresh and dry weights (P≤ 0.05), height, concentration and uptake of P (P≤ 0.01), respectively. Results also showed that the tomato fruit residue treatment in comparison with P fertilizer and malic acid treatments results in a significant increase in P taken up, and fresh and dry weights (P≤ 0.05). There was a significant difference between P fertilizer + oxalic acid and oxalic acid alone treatments in only plant height (P≤ 0.05). Also, no significant differences in terms of measured plant parameters were observed between malic acid and blank treatments (P≤ 0.05). Conclusion Application of tomato fruit residue rather than P fertilizer can help to take up residual soil P, to grow plants and to decrease of environmental pollution, and to be also affordable economically.
H. Tazikeh; F. Khormali; A. Amini; M. Barani Motlagh
A Ardeshiri Lajimi; R Ghorbani Nasrabadi; M Barani Motlagh; S A Movahedi
S. Baghbani; M. Baranimotlgh; E. Dordipour