Plant Nutrition, Soil Fertility and Fertilizers
Mehri Bazi abdoli; M Barani; abdolamir Bosatni; Taleb Nazari
Abstract
Introduction: Various biomass sources such as crop residues have been proposed as feedstock for biochar production . Meanwhile, a large quantity of crop residues (rice) is produced as waste and they are either burnt or piled and abandoned at some locations in the fields. Burning of crop residues is resulting ...
Read More
Introduction: Various biomass sources such as crop residues have been proposed as feedstock for biochar production . Meanwhile, a large quantity of crop residues (rice) is produced as waste and they are either burnt or piled and abandoned at some locations in the fields. Burning of crop residues is resulting in substantial loss of nutrients, and may lead to air pollution and human health problems . An alternative approach is to apply crop residues to soil in the form of biochar. Bioavailability of nutrients exclusively micronutrients (Fe, Zn) isa serious problem in soils having high pH which ends in crops yield to decline and ultimately can lead to malnutrition in humans. The biochar modification with acid may increase the solubility of nutrients (P, , Fe, Zn, Cu,,Mn) present in biochar, thereby significant improvement in mineral nutrition of plants grown in calcareous soils. In the other hand, One of the ways to use and exploit saline lands is to use salinity-tolerant cultivars, such as the Quinoa (Chenopodium quinoa) plant. It is known that biochar increases soil pH, which may result in less availability of phosphorus and other micronutrients, such as Fe, Zn, and Mn, in alkaline and calcareous soils. Therefore, modifying biochar with acids can increase the availability of nutrients in biochar for different plants grown in calcareous soils. The objection of this study is to investigate the effect of normal biochar and acid-modified biochar from rice residues on the yield and yield components of quinoa plants (Gizavan number) in a calcareous soil affected by salt.Materials and Methods: The soil used in the study was collected from 0-30 cm depth which passed through via 2-mm sieve after air-drying and its chemical and physical properties were determined. To achieve the aim of this study, the factorial experiment was carried out in a completely randomized design in 4 replications. Factors include 3 types of rice biochar (unmodified, modified by pre-acidic method and modified by post-acidic method) and different levels of biochar (0, 2, and 5% by weight). Then 10 quinoa seeds were planted in each pot at 2 cm depth which after the plant emerging and greening declined to 3 plants in each pot. The pots were randomly moved twice a week during growth to eliminate environmental effects. Irrigation and weeding operations were done by hand. After the end of the growth period (187 days), the plants were harvested. So vegetative growth parameters and yield components including shoots fresh and dry weight, plant height, stem diameter, panicle length, number of leaves, number of lateral branches, and 1000 grain weight were measured and then biological yield and harvest index were determined. The statistical results of the data were analyzed using SAS software (9.4) and the LSD test (at 5% level) was used for comparing the mean values.Results and Discussion: As a result of adding biochar to soil, it becomes alkaline. Chemical modification of biochar using strong acids can reduce soil pH and improve the fertility of calcareous soils and increase vegetative parameters and yield components of quinoa. Based on the obtained results, the interaction effect of different types and levels of biochar on all investigated traits was significant at the level of 1%. The results showed that the highest height, fresh and dry weight, panicle length, number of lateral branches, and stem diameter were related to the 5% post-acidic rice biochar treatment and the lowest value was related to the control treatment. furthermore, the results showed that the highest amount of plant dry weight of 8.82 gr/pot, the height of 77.50 cm, and 1000 seed weight of 17.3 gr/pot was obtained from the treatment of 5% post-acidic rice biochar, compared to the treatment of 5% Unacidified rice biochar had an increase of (81.97), (56.77), (32.17) and (7.06) percent respectively. As a result of the high dry weight of shoots and the 1000 seed weight, the 5% post-acidic rice biochar treatment provided the highest biological yield at 16.05 and harvest index at 45.03.Conclusion: Under the conditions of this study, acid-modified biochars (post-acidic and pre-acidic) enhanced vegetative growth characteristics and yield components of quinoa plants in calcareous soils affected by salt. Therefore, it is recommended to prepare biochar from acidic sources or to modify it with post-acidic and pre- acidic methods.
Ali Khorasani; abdolamir Bosatni
Abstract
Assessment of Irrigation System and Nitrogen Fertilizer Level on Nitrate Distribution in Soil Using Nitrogen-15 Isotope Tracking TechniqueIntroduction: Soil contamination is the presence, diffusion or fusion of foreign matter into the soil, altering its physical and chemical quality in a manner that ...
Read More
Assessment of Irrigation System and Nitrogen Fertilizer Level on Nitrate Distribution in Soil Using Nitrogen-15 Isotope Tracking TechniqueIntroduction: Soil contamination is the presence, diffusion or fusion of foreign matter into the soil, altering its physical and chemical quality in a manner that is harmful to humans, plants and the environment. Soil nitrate pollution due to excessive use of nitrogen fertilizer and inappropriate irrigation causes nitrate accumulation under the active root zone and its movement to groundwater and endangers the environment. By labelling the soil with 15N-labelled nitrate or urea it is possible to trace the fate of fertilizer derived nitrate down the soil profile. This can be achieved by taking sequential by using suction cups to sample the nitrate in the soil solution. The purpose of this study was to investigate the effect of irrigation system and nitrogen fertilizer level on the amount and pattern of nitrate distribution in different soil depths.Materials and Methods: The experiment was conducted in a randomized complete block design with a split plot in two plots and three replications on tomato plant in Agricultural Research Farm of Nuclear Science and Technology Research Institute. Furrow and drip irrigation systems as the main factor and fertilizer treatment (100 and 200 kg N/ha from urea fertilizer source), soil depths (including 15, 30 and 60 cm) and sampling time (Includes 28, 40, 61 and 80 days after plantin) were first, second and third sub-factors respectively. In order to trace nitrogen, CO(15NH2)2 urea fertilizer with enrichment of 4.634% was used. Three soil solution extractors were installed at depths of 15, 30 and 60 cm in each isotopic plot in each replication and extraction was performed 4 times. Soil solution nitrate and 15N/14N isotope ratio were measured by spectrophotometer and mass spectrometer respectively. Results and Discussion: The highest soil nitrate-N (N-NO3) concentration(94.31 mg L-1) in furrow irrigation (Fertilizer level of 200 kg N ha-1, soil depth of 60 cm and third time of soil solution sampling) and its lowest concentration(1.73 mg l-1) in drip fertigation system (fertilizer level of 100 kg N ha-1, soil depth of 60 cm and fourth time of soil solution sampling) was observed. The results showed that the concentration of nitrate-N in the drip fertigation system was higher at a depth of 15 cm (active root depth) than at depths of 30 and 60 cm. The highest concentration of nitrate nitrogen derived from the source of nitrogen-15 (N-15NO3 dff)(88.82 mgl-1) in furrow irrigation (Fertilizer level of 200 kg N ha-1, soil depth of 60 cm and third time of soil solution sampling) and the lowest concentration (0.12 mgl-1) in drip irrigation fertilizer (fertilizer level of 100 kg N ha-1, soil depth of 30 cm and second time of soil solution sampling) was observed. Nitrate-N concentration derived from labeled fertilizer source in furrow irrigation at a depth of 60 cm (below the active root depth in furrow irrigation) was greater than the depths of 15 and 30 cm. the results also showed that The highest concentration(42.25 mgl-1) of nitrate-N derived from soil source in drip fertigation system (fertilizer level of 200 kg N ha-1, soil depth of 15 cm and first time of soil solution sampling) and the lowest concentration (0.29 mgl-1) in drip fertigation system (100 kg N ha-1, soil depth of 60 Cm and the fourth time of soil solution sampling) was observed.Conclusion: The results showed that of the total nitrate nitrogen in the 0-60 cm depth, the values (62, 29 and 9%) in the drip and (10, 34 and 56%) in the furrow irrigation system in Depths of 15, 30 and 60 cm were observed respectively. Nitrogen-15 data showed that of the total soil nitrate nitrogen, the values of 20 and 80 percent in fertigation system and 77 and 23 percent in furrow irrigation system was observed from labeled fertilizer and soil source, respectively. increasing nitrate accumulation was observed in soil depth of 60 cm with increasing nitrogen application in furrow irrigation. The use of fertigation system was effective to prevent nitrogen loss from the active root zone of the plant. In general, fertigation system and fertilizer level of 100 kg N ha-1 was the best irrigation method and the best fertilizer level to reduce nitrate leaching losses in the conditions of this study.