Plant Nutrition, Soil Fertility and Fertilizers
Fatemeh Foroozesh fard; Shohreh Zivdar; Esmaeil Khaleghi; Edris Shabani
Abstract
Introduction: One of the important aspects of nutrition physiology in fruit trees is the study of seasonal changes in leaf elements, because the seasonal pattern of absorption and distribution of nutrient elements is very important in estimating the fertilizer requirement of fruit orchards. The movement ...
Read More
Introduction: One of the important aspects of nutrition physiology in fruit trees is the study of seasonal changes in leaf elements, because the seasonal pattern of absorption and distribution of nutrient elements is very important in estimating the fertilizer requirement of fruit orchards. The movement of nutrients in fruit crops has been reported a lot, and the plants' need for a specific element is influenced by a specific growth stage in the plant. Research has shown that nutrient accumulation occurs as a continuous process throughout the growing season. In plants, the change process of elements is different in the seasons. By examining the dynamics of elements during different seasons and having the necessary information about these changes, it is possible to examine the relationship between the demand for nutrients during the periods of vegetative and reproductive growth.In Iran, many research has been done on the nutritional requirements of different commercial fruit cultivars, and many studies have reported the dynamics of nutrients in fruit trees during the growing season, but in the case of dates, despite the relative diversity Regarding the cultivars of this plant and Iran's presence in the international competitive markets, there was no report on measuring the dynamics of nutrient elements during the seasons. In the upcoming research, the seasonal evaluation of the concentration of some macronutrients and micronutrients in the leaves of three date varieties has been done.This study was carried out in order to evaluate the seasonal changes in nutrients in the leaves of three date varieties.Materials and Methods: This experiment was conducted in the date palm research garden in the northern part of Shahid Chamran University of Ahvaz, in a randomized complete block design with four replications, during 2022 on the leaves of ten years old date palm cultivars (Berhi, Estamaran, and Zahedi). In this experiment, the trend of seasonal changes in macro nutrients (nitrogen, phosphorus, potassium and calcium) and micro nutrients (iron, copper, boron, zinc and manganese) concentration, were investigated throughout the four seasons.After collecting the data, the data was statistically analyzed using SAS 9.1 statistical software, and Duncan's test was used to compare the average data at the level of one and five percent.Results and Discussion: The results showed that the seasons have a significant effect on the concentration of the elements except nitrogen and manganese. Also, the interaction of season and cultivar had a significant effect on the concentration of all nutrients. In terms of macronutrients, Berhi had a better condition, especially during the growing season (spring and summer). The highest difference in terms of element concentration was observed between the winter and growth seasons for date cultivars. The minimum concentration of nitrogen (0.94%) was for Zahedi in spring and winter and the maximum concentration was 2.01% for Barhi (winter). Phosphorus concentration was recorded from the lowest (0.13%) in winter and spring to the highest (0.36%) in summer for Barhi. The range of potassium changes ranged from 1.01% (Estamaran, autumn) to 1.18% (Zahedi, winter). The seasonal changes in calcium concentration was recorded between 0.76 and 0.92%. Also, the range of changes in iron concentration during the year was from 65 to 130 mg/kg and during the growing season to mid-summer from 87 to 117 mg/kg. Bades on the results, leaf iron concentration was estimated to be less than optimal in all seasons. Also the concentration of nitrogen, potassium and copper in leaves decreased during the growth season, especially in summer, and can be due to the consumption of these elements for reproductive growth.Conclusion: The concentration of minerals in plants depends on the interaction of several factors including soil, plant species, climate, growth stages, plant production and management and the interaction of elements during absorption. The successful growth of plants and trees requires suitable soil and the presence of sufficient amounts of usable elements and the relationship between them, among which nitrogen, phosphorus and potassium elements are among the main essential elements required by the plant.The results showed that there is a significant seasonal variation in macronutrients and micronutrients in three date varieties. Also, different seasonal changes patterns were observed among cultivars regarding elements. In such a way, potassium and calcium are more stable than nitrogen and phosphorus during different seasons of the year. Macronutrients (phosphorus and calcium) and micronutrients (zinc, boron and manganese) were at the optimal level. But, the amount of nitrogen, potassium, iron and copper was evaluated as less than the optimal level, which suggests the use of fertilizers containing the mentioned elements at the end of winter..
Plant Nutrition, Soil Fertility and Fertilizers
edris shabani
Abstract
Introduction The decrease in yield and quality levels of button mushrooms during the cultivation period is one of the important challenges of the mushroom production industry, due to the reduction of substrate nutrients and the accumulation of undesirable compounds. One of the solutions to prevent the ...
Read More
Introduction The decrease in yield and quality levels of button mushrooms during the cultivation period is one of the important challenges of the mushroom production industry, due to the reduction of substrate nutrients and the accumulation of undesirable compounds. One of the solutions to prevent the decrease in yield and qualitative characteristics of edible mushrooms during different flushes is to enrich compost with nutrient supplements.Materials and Methods In order to investigate the effect of supplementary nutrition at different times on the yield indicators of button mushroom, a factorial experiment based on completely randomized design was conducted. Experimental treatments included four concentrations (C) of supplementary nutrition (0 (C1), 20 (C2), 40 (C3) and 60 (C4) g/L) (combination of two phases, the liquid phase includes micro and macro elements and amino acids, and the solid phase includes sucrose and dextrin) and two application times (one day after harvesting the first flush (T1) and the beginning of the second flush and the formation of pin (T2).Results and Discussion The findings of this research indicated the highest number of button mushroom was observed in C3T2 treatment by 215.89, which demonstrated a 20.35% increase compared to C1T2 treatment. The lowest single mushroom weight was measured in the first time of foliar spraying in C1T1 treatment and the highest single mushroom weight was obtained in the second time of foliar spraying in C3T2 and C2T2 treatments, respectively. The maximum length of the mushroom base was obtained in C2T2 treatment by 1.36 cm. Along with the increase in the concentration of nutritional solutions; the diameter of the cap showed a significant increase at T1 time, while at T2 time, this value showed a decreasing trend after the treatment of 20 g/L of nutrient solution. In addition, no significant difference was observed between the cap diameter of mushrooms treated with 20 and 40 g/L in treatments of C2T2 and C3T2, and the maximum cap diameter of mushrooms in these treatments was 3.73 and 3.67 cm, respectively. Enrichment of button mushroom compost by nutritional supplements can prevent severe yield reduction during different flushes.The number of mushrooms produced in two different times was not significant. It showed that the effect of using time of supplemental nutrition was more effective on the rapid growth of the formed pins than growth of new pins. The formation of pins and the number of mushrooms were under the influence of the amount of inoculation and used spawn in the compost. The positive results obtained from the foliar application of the nutrients showed that its compounds, including sucrose and dextrose and highly consumed elements such as nitrogen, phosphorus, potassium and amino acids, have played an important role on the number, single weight of mushrooms and the cap diameter of mushroom. The use of nutrient solution in C3T2 treatment compared to C1T2 increased nitrogen percentage by 66.43%, protein by 66.22%, tissue firmness by 71.44% and biological efficiency of substrate by 66.32%, respectively. Pervious study showed that, the effect of different concentrations of three amino acids asparagine, glutamine and glycine on some quality indicators and performance components of white button mushroom was investigated and the results indicated that asparagine 150 ppm improved the yield and increased the protein content. High NPK content in mushroom substrates significantly shortens the rate of mycelium propagation and increases oyster mushroom growth. One of the basic criteria for a good mushroom substrate is the carbohydrate and nitrogen content to support mushroom growth.Also, using a concentration of 40 g/L of nutrient solution at the time of emergence of the second pin, in comparison with C1T2 treatment, increased the yield of the second flush by 64.15%, the yield of the third flush by 71.17%, the yield of all flushes by 26.79% and the total yield of composted by 26.76%, respectively. Carbon, with its structural role and presence in most organic compounds and providing energy for metabolic reactions, plays a significant role in the growth of button mushrooms. On the other hand, button mushrooms are able to use amino acids as a source of nitrogen. Therefore, it seems that the use of the above compounds in the nutrient solution used in this research has been able to produce favorable results both quantitatively and qualitatively in the studied button mushrooms. On the other hand, it seems that the presence of widely used elements such as phosphorus and potassium in the nutrients used in this research and the positive role of these elements in the production of nucleic acid, adenosine triphosphate, membrane phospholipids and enzyme reactions has been able to play a key role in increasing the quantitative and qualitative properties of button mushrooms.Conclusion The use of 40 g/L concentration of nutritional supplement at the time of the appearance of the second flush by affecting the percentage of dry matter, protein and tissue firmness increased the quality level of button mushrooms and enhanced quantitative level by improving yield indicators such as the number of mushrooms, single weight of mushroom, total yield of flushes and percentage of total yield of compost.