مدل‌سازی ارتباطی کمونده کمپاین جان‌دیر ۹۵۵ با استفاده از آنالیز مودال‌های عملیاتی

حامد غفار زاده زارع، علی ملکی، محسن ایرانی رهقی و مجيد لشگری

چکیده
در این تحقیق پارامترهای مودال کمونده کمپاین در شرایط کاری واقع تحت بار محیطی با استفاده از آنالیز مودال عملیاتی به شوهد غیر پارامترهای روش تجزیه فرکانس تخمین ذده شد. کمپاین به وسیله موتور و ارتباطات ناشی از قسمت‌های کاری مختلف تحرک شد و نکات‌های شتاب با استفاده از سنسور نشان شد. سرعت مختلف کمونده جمع‌آوری شد. در پی بررسی پارامترهای سیگال شال مبتنی، فاکتور لغزش، جذر میانگین برای انرژی و انتروپی در دوره مختلف کمونده مشخص شد. این پارامترها در دوره ۱۰۰۰ rpm نسبت به دیگر دوره‌ها بطور متغیره مقداری بالاتری دارند. به وجود افت شدت در این دور را تا حدید می‌کرد. بنابراین به بررسی پارامترهای مودال سازه به روش تجزیه فرکانس در دوره ۱۰۰۰ پداتراختی و مدل‌آزمایی محدودیت‌های آنالیز مودال تعیین داده شد. از بررسی محدوده فرکانس‌های طبیعی و فرکانس‌های تحرکی واحد کمونده یک فرکانس رژیم برای مودال سازه مورد نظر نتایج شد که عده‌ای تغییر و ارتباط در واحد کمونده تغییر داده شد. در انتخاب فرکانس‌های ناسازه انتخاب گردن دور به قطر یک سانتی‌متر بین دو فلنج میانی کمونده انجام گرفت و مشاهده شد. جریان را نشان دهنده فرکانس طبیعی مودول به ۱۰۰۰ rpm تغییر یافت. با فاصله گرفتن از فرکانس طبیعی از فرکانس تحرکی، شرایط ایجاد پیدا راوی و در نتیجه ارتباطات کمونده کاهش یافت.

تاریخچه مقاله
پذیرش نهایی: ۱۳۹۷/۱۱/۰۶
دریافت: ۱۳۹۶/۱۰/۰۷

کلمات کلیدی:
اصلاح سازه.
آنالیز مودال عملیاتی
کمونده کمپاین

عهد دار مکاتبات
Email: maleki@sku.ac.ir

مقدمه
با وجود اینکه متوسط افت کمپاین در کشورهای پیشنهده ۴ تا ۵ درصد نسبی، کمونده نسب به دیگر کمونده‌ها در حد میانگین به‌طور بیشتری از پژوهش‌ها و تحقیقات گروهی برای این عرصه، این مقدار برای کشور ایران تا ۲۰ درصد نگرش شده است(۱۵). برای داشتن حداکثر افت، باید فرآیند برداشت محصول (برش) اندازه‌گیری کشش، جداسازی و... بهینه‌سازی گردد. یکی از فرآیندهای مهم در عملیات برداشت غلت توسط کمپاین...
شفیع مواد است که توسط واحده کوینده انجام می‌گردد. در واقع کوینده قلب یک کمیاب است. محصول پس از درد توقیفی تغذیه در اختیار کوینده قرار می‌گیرد که عمل کویند محصول را انجام می‌دهد. کوینده استاتوکی آن خالی است که به‌طور قابل توجهی در پریوران آن نصب شده است تعداد تغییرات شنا هستد عدد است و در اثر حرکت دورانی خود به محصول ضربه زده تا نیمه از خوش‌شانگی خود کویندین در اثر دو عمل ضرغ و سایش انجام می‌گیرد. لازم است که کویندین، عبور مواد از یک فضای محصور است به یک منظور از سه انجایی‌گر در زیر کوینده استاتوکی شنا می‌کند کویندین سرعت دورانی کوینده برای اندازه‌گیری ضریب کویندین و سرعت دورانی کوینده برابری می‌کند که متاثر از مخلوط حجم تغذیه مواد به کویندین باید غیر معنی‌دار باشد. همچنین با پایشان قسمتی از شیکه ضر کوینده می‌تواند در کم اثر کویندین را زیادتر کرد (17)شکل. 1 در فرم کوینده کمیابی دانه‌ها از سه‌تاد با غلاف خارج شده و حداکثر ۹۰ درصد آن‌ها از منافع ضر کویندین عبور می‌کنند. از آنجایی که کویندین بیشترین تأثیر را روی عملکرد کمیاب دارد بنابراین ارغوانیت این واحده بیشتر می‌شود عمل کویندین به درستی انجام نکرده و افراد کمیاب افزایش تاپید(4)همچنین بیش از کاوش دقت کار و راحتی رانندگی می‌شود(5). بنابراین بررسی ارتعاش بوجود آمد در واحده کویندین این نتایج به بررسی ارتعاشات در کوینده می‌باشد بر پایه کویندین. آنها می‌باید کردنی که افزایش ارتعاش در کوینده سبب افزایش ریزش دانه، کاهش عمر کویندین و امکان ایجاد بیده جدی کرده‌اند. کویندین می‌شود.

در سالهای گذشته پیشرفت‌های زیادی در اندازه‌گیری و آلتری ارتعاشات برای پایش ماهی‌های دوار در حال کار حاصل شده است. پایش بر پایه ارتعاشات به عوامل یک روش توانمند به طور صرفاً برای شناسایی یکی در ماهی‌های دوار به کار گرفته می‌شود(16). برای

1- Tang et al
ارتعاش سکوی برش کمباین پرداختن، نتایج نشان داد که شرایط روندات اطراف فرکانس طبقی مود پنجم سازه وجود دارد. هر بخش شرایط غیر بخش اصلاح سازه انجام شد.

ارتعاعات کوئنده روح افت کمباین پیمان تاثیر گذار است. از این رو بررسی عمل ارتعاش کوئنده و واقع راه حل‌های برای کاهش آن از اهمیت ویژه‌ای در این‌جا طول عمر و

چکیده واحد کوئش پرداختن است.

کمباین سازهای بزرگ و‌پیچیده است و واحد کوئنده آن دارای اتصالات زیادی است و علی‌رغم شرایط کاری آن بسیار منفی است که واسطه به دور کوئنده، حجم مواد ورودی به کوئنده و فاصله کوئنده و ضدمکان به‌عنوان سریای نیروی تحریک وجود ندارد. این شرایط استفاده از آنتی‌زاس مواد تجزیه‌ریزی را برای تحلیل مواد کوئنده با مشکل مواجه کرد. بنابراین برای تحلیل مواد این سازه‌ها که با نیرو و ارتعاعات محیطی تحریک می‌شوند استفاده از آنتی‌زاس مواد عملیاتی توصیه می‌گردد. آنتی‌زاس مواد عملیاتی برای تحقیق‌های منظوم و نیروی تحریکی بسیار بالای هر کم‌یک سازه به‌کار برده در این‌جا استفاده می‌شود (اطلاعات مربوط به تحلیل ورودی مورد نیست(31)).

برای تحقیق در قسمت‌های مختلف کمباین، سپر کاهش دقت کمباین و راحتی رانندگی و همچنین افزایش افت کمباین می‌شود. بدين منظر نتایج تحقیقات زیادی با هدف بررسی ارتراخ واحد بخش کمباین انجام گرفته است(42-6). اما با توجه به بررسی‌های انجام

گرده مشخص شد تاکنون تحقیقات در مورد بررسی ارتعاش در کوئنده کمباین برداشته با استفاده از آنتی‌زاس

Figure (1): شکل (1) واحد کوئش کمباین برداشت غلات

مودال عملیاتی منشأی نشده است. بنابراین با توجه به اهمیت تاثیر ارتعاش کوئنده بر عملکرد کمباین و رانته، بررسی عمل ارتعاش در کوئنده و اصلاح آن ضروری به نظر می‌رسد. بنابراین هدف این تحقیق، اصلاح مدل ارتعاشی کوئنده کمباین با استفاده از آنتی‌زاس مودال عملیاتی است بنابراین سعی بر آن است مدال اجزای محدود از کوئنده طراحی و با اطلاعات به‌دست آمده از آنتی‌زاس مودال عملیاتی تطابقی داشته و سپس با اصلاح ساختن به شیوه اصلاح سختی، تا حد امکان ارتعاع کوئنده تعیین گردد.

مواد و روش‌ها:

تنویی آنتی‌زاس مودال عملیاتی بخش تجزیه (FDD) فرکانسی استخراج مشخصات دینامیکی سازه با استفاده از آنتی‌زاس مودال عملیاتی به دو شیوه کلی پارامتریک و غیر پارامتریک انجام می‌گیرد. بکی از روش‌های غیر پارامتریک روش تجزیه فرکانسی است، که شاهد نشانه‌ها بخش از روش انتخاب قله و تابع سطح سیاوش مواد مختصات دارد. در این روش که توسط برینکر و همکاران (ارائه شده، انتدا ماریس چنگالی طیف محاسبه شده و سپس روش تجزیه مقداری نکن بروی آن آموزش می‌شود به

کمک آن، مقدار فرکانس‌های طبقی، ضرایب دنی‌گنج و شکل موده به‌دست می‌آید (۳۰.۵. جاناتا در رابطه (۱) ملاحظه می‌شود، اساس روابط حاکم بر روش تجزیه

1- Frequency Domain Decomposition
2- Brincker et al.
فرکانسی بر رابطه بین خروجی‌ها و ورودی‌های یک سیستم استوار است:

\[G_{yy}(j\omega) = H(j\omega)G_{ss}(j\omega)H^T(j\omega) \] \hspace{1cm} (1)

که در آن، \(G_{ss}(j\omega) \) ماتریس طیف چگالی نویسی خروجی و \(H(j\omega) \) ماتریس طیف چگالی نویسی ورودی است.

\[H(j\omega) = \sum_{k=1}^{n}\frac{Q_k}{J_{m_k}-\lambda_k} \] \hspace{1cm} (2)

در صورتی که ورودی به دائمی نیست و با یک ماتریس چگالی نویسی خروجی ورودی باشد، ماتریس \(G_{ss}(j\omega) = C[1] \) خواهد بود.

\[G_{ss}(j\omega) = \sum_{k=1}^{n}\frac{Q_k}{J_{m_k}-\lambda_k} \] \hspace{1cm} (3)

در این رابطه، \(\lambda_k \) ایمین بقای آن ونی به عنوان خروجی است. به این ترتیب، با یک ماتریس چگالی نویسی خروجی باشد، ماتریس \(G_{ss}(j\omega) \) خواهد بود.

\[G_{yy}(j\omega) = U_j S_j U_j^H \] \hspace{1cm} (4)

برای اندازه‌گیری ارتعابات کوئینه در شرایط عملی از دو حاکم شاخصی پی با کارکرد یک سیستم انتخاب شده‌اند. (DYTRAN/3255A2) مدل سیسکال برای انتخاب سیستم استفاده شده که از آن‌ها جداگانه این آنتی‌زاس، کمیابی را در حالت معمول خود می‌کند که در لحاظ اولیت به همدیگر سازه شده و توجه به همدیگر سازه، حداکثر به‌طور همزمان روابط یکنواختان کوئینه برای

\[Ak = QkC \left(\sum_{s=1}^{n}\frac{Q_s}{J_{k_s}-\lambda_s^*} + \frac{Q_s^T}{J_{k_s}-\lambda_s^*} \right) \] \hspace{1cm} (5)

با استفاده از یک اتصال تماسی، با کارکرد به‌طور اولیتی به یکنواختان کوئینه \(k_s \) و اجرا کردن ایمین اصلی پی.
تحقیق نیز از روش استخراج ویژگی به منظور بررسی اثر سرعت‌های دوران مختلف کوینده روی سیگنال‌ها استفاده شد. توان استفاده شده از تحقیق ام در عبارت بودن از مانگانی، شاخ صدری، چراغ مانگین مربعات، ازدیک و انرژی (7). جدول 1 معادله توان آماری مذکور را نشان می‌دهد.

ایجاد مدل الالام محدود سازه
برای مدل سازی هندسی کوینده و شیء‌سازی آن به روش ABAQUS اجرای محدود استفاده شد. در مدل سازی کوینده، چهار جز از کوینده شامل 8 عدد تنه، چهار عدد صحنه، روتر و پایان‌ها ایجاد شدند. این اجزای همگی شکل توربوده و به صورت تغییر شکل، بدین ترتیب شدند. خصوصیات طراحی شالی شکلی، ضخامت اندبازه برای اجزای سازنده کوینده در مدل سازی مطابق کوینده کمبیان جانبدار مدل 955 تعیین شد. در قسمت تعیین خواص مواد در ترم‌های سازندای با مدول استیسیته 200 گیگا پاسکال، تغییر 7800 کیلویاتر بر متراکب و ضربی پواسون 0.3 تعیین شد. در محیط محیط‌های چهار جز کوینده فرکانسی شدند و در مدل تعامل 3 بین سطوحی از قطعات که در تمام با کیفیت قرار دادن، و سپس شیء‌سازی کوینده به صورت مانگانی چهار همچنین اول چهار گروهی انجام گرفت. از آنجا‌ها که پس از تحقیق یافته تحلیل به اندازه‌های منظم و همگی نمودن حل، تراکم مرحله‌های به طور منظم کاهش و افزایش یافت و اثر این تغییرات روی نتایج خروجی بررسی و به‌طور موردی انجام انتخاب شد (شکل 3).
جدول (1) پارامترهای استخراج شده از سیگنال‌ها

<table>
<thead>
<tr>
<th>رابطه</th>
<th>تابع</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>میانگین</td>
</tr>
<tr>
<td>Impulse Factor</td>
<td>Impulse Factor</td>
</tr>
<tr>
<td>جذر میانگین مربعات</td>
<td>R.M.S</td>
</tr>
<tr>
<td>اریثمن</td>
<td>Energy</td>
</tr>
<tr>
<td>انرژی</td>
<td>Energy</td>
</tr>
<tr>
<td>انتروپی</td>
<td>Entropy</td>
</tr>
</tbody>
</table>

\[\text{RMS} = \sqrt{\frac{\sum_{n=1}^{N} (x(n))^2}{N}} \]

\[\text{Energy} = \sum_{n=1}^{N} (x(n))^2 \]

\[\text{Entropy} = \sum_{n=1}^{N} (x(n))^n \log\left(\frac{1}{x(n)}\right)^2 \]

شکل (2) محل نصب سنسور‌ها روی یک آداپتان ها کوبنده بصورت افقی و عمودی در طرف راست و چپ کوبنده

Figure (2) The location of the sensors on the bearings on the right and left sides of thresher

شکل (3) مدل شب‌بندی شده واحد کوبنده

Figure (3) The meshed model of the thresher
مقایسه نتایج تحلیلی و تجربی

از مهم‌ترین کاربردهای آزمون مدول بالعکس، به‌وسیله مدل‌های عددي سیستم‌های دینامیکی با مقایسه پارامترهای مدول حاصل از نتایج آزمون مدول و مدل‌های عددي است. پس از به‌خودی مدل عددي می‌توان از آن در تحلیل‌های بعدی مانند پیش‌بینی باعث به یک نیرو وارد بر سازه، تحلیل ارتعاشی و غيره استفاده کرد (7).

یکی از روشهای ساده بررسی صحبت مدل اجزای محدود مقایسه پارامترهای دینامیکی (فرکانس‌های طبیعی و شکل موده‌های نوسانی حاصل از روش اجزای محدود) با فرکانس‌ها طبیعی و موده‌های نوسانی بدست آمده از تست مدول است. اگر نتایج از اطاق قبل قبولی برخورد باشنده، مدل عددي ساخته شده مناسب بوده و می‌توان در مراحل دیگر آنلاین از آن با اطمینان استفاده کرد.

اصلاح سازه

اصلاح‌سازه به عنوان یکی از کاربردهای آنلاین مدول، تکنیکی برای مطالعه اثر تغییر پارامترهای فیزیکی یک سازه بر روی مشخصات دینامیکی آن به‌وسیله مقایسه طبیعی و شکل موده‌های آن با هدف بهبود رفتار دینامیکی سازه است(8). برای این منظور لازم است که یک مدل دقیقی از سازه ایجاد شود که بتواند تأثیر اصلاحات ایجاد شده روی سازه را به‌خوبی پیش‌بینی کند. فرآیند اصلاح سازه با توجه به پیدا گیری آن می‌توان با تغییر در جرم، سختی یا دمپینگ انجم داد. برای یک سازه واقعی تغییر پارامترهای فیزیکی می‌تواند مانع تغییرات موثر جرم و سختی باشد که در اثر تغییر سطح وضعیت و یا با اضافه کردن یک قطعه، یا جوش دادن بین دو موقعیت ایجاد شد.

نتایج و بحث

استخراج ویژگی‌های سیگنال

در شکل 4 یک نمونه سیگنال مربوط به کوئینده در حال افقی و عمودی ارائه شده است. به‌مقدار که مشاهده می‌گردد دامنه سیگنال‌ها در حالت عمودی بسیار

مقدمه‌ای در مقاله علمی کشاورزی جلد 43 شماره 1 بهار 1398
به حالت افقي بيشتر است. بطور تناوب در كوندنده نسبت به حالت افقي بيشتر است. با توجه به فرمول های جدول 1 پارامترهای سیگنال ها در دورهای مختلف کوینده در حالت افقي بيشتر است. بطور تناوب در كوندنده نسبت به حالت افقي بيشتر است. با توجه به فرمول های جدول 1 پارامترهای سیگنال ها در دورهای مختلف کوینده در

شکل (4) نمونه ای از سیگنال افقتی و عمودی

Figure (4) A sample of vertical and horizontal vibration signals

شکل (5) مقادیر انرژی استخراج شده از سیگنال ها

Figure (5) Energy values extracted from the signals
Figure (6) Entropy values extracted from the signals

Figure (7) Impulse factor values extracted from the signals

Figure (8) Mean values extracted from the signals
شکل (9) مقادیر ریشه میانگین مربعات استخراج شده از سیگنال‌ها

Figure (9) RMS values extracted from the signals

شکل (10) مقادیر مضرده ماتریس چگالی طیف توان برحس فرکانس‌های مختلف (1000 rpm)

Figure (10) Singular values of the PSD matrix of the response (1000 rpm)

میزان انرژی یک سیگنال بیانگر میزان اغتشاش آن سیگنال است. در واقع انرژی زیاد سیگنال نشان از برخی یک پدیده در هست دارد. در شکل 5 مشاهده می‌شود انرژی سیگنال در دور 1000 rpm به مقدار زیادی افزایشی صورت می‌گیرد. همچنین نتایج شکل‌های 6 تا 9 نشان می‌دهد مقادیر میانگین، فاکتور ضریب، ریشه مایانگین مربعات و انرژی در سیگنال مربوط به دور rpm 1000 کویرد نظیر می‌گردد. از این دوره پایلر از میانگین مصرفی به سایر دوره بالاتر است. بنابراین با توجه به این که مقادیر مربوط به سایر دوره با تغییرات در یک منطقه به‌دست آمده‌اند، می‌توان نتیجه گرفت ارتعاش کویرد در دور 1000 rpm به دلیلی زیاد است.
Table 2- Natural frequencies obtained from the theoretical results under different rotating speeds

<table>
<thead>
<tr>
<th>Speed(rpm)</th>
<th>f1(Hz)</th>
<th>f2(Hz)</th>
<th>f3(Hz)</th>
<th>f4(Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>16.64</td>
<td>39.35</td>
<td>52.49</td>
<td>65.64</td>
</tr>
<tr>
<td>900</td>
<td>16.61</td>
<td>39.32</td>
<td>52.51</td>
<td>65.68</td>
</tr>
<tr>
<td>1000</td>
<td>16.64</td>
<td>39.35</td>
<td>52.49</td>
<td>65.64</td>
</tr>
<tr>
<td>1200</td>
<td>16.73</td>
<td>39.44</td>
<td>52.59</td>
<td>65.73</td>
</tr>
<tr>
<td>1350</td>
<td>16.65</td>
<td>39.41</td>
<td>52.55</td>
<td>65.69</td>
</tr>
<tr>
<td>1500</td>
<td>16.65</td>
<td>39.44</td>
<td>52.59</td>
<td>65.82</td>
</tr>
</tbody>
</table>

Mean: 16.65

Figure (11) The first 4 mode shapes of combine harvester thresher calculated by the finite element mode

Figure (12) The locations of applying mass in order to modify the structure
جدول (3) فرکانس‌های طبیعی بدست آمده از نتایج شیب سازی و تست و درصد خطا

Table (3) Natural frequencies obtained from the theoretical results and the test and percentage error

<table>
<thead>
<tr>
<th>شماره مود</th>
<th>_MODE No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM(Hz)</td>
<td>67.32</td>
<td>50.18</td>
<td>36.65</td>
<td>16.98</td>
<td></td>
</tr>
<tr>
<td>FDD(Hz)</td>
<td>65.71</td>
<td>52.54</td>
<td>39.39</td>
<td>16.65</td>
<td></td>
</tr>
<tr>
<td>Error(%)</td>
<td>2.45</td>
<td>4.70</td>
<td>7.47</td>
<td>1.98</td>
<td></td>
</tr>
</tbody>
</table>

شکل (13) فرکانس‌های طبیعی بینی شده و اندازه‌گیری شده

Figure (13) Natural frequency difference (NFD) diagram

شکل (14) مکان‌های قرار گرفتن سیم‌های تغییر شکل

Figure (14) The locations of applying bars in order to modify the structure
شکل (15) موقعیت نصب میله‌ها روی کوئنده

Figure (15) The locations of applying mass on the thresher

شکل (16) موقعیت نصب میله‌ها روی کوئنده

Figure (16) The locations of applying bars on the thresher

بعد از اصلاح سازه به روی مدل و انتخاب مکان مناسب برای نصب جریه‌ها و میله‌ها، همان‌گونه که در شکل‌های ۱۵ و ۱۶ مشاهده می‌شود در میان واقع تغییرات روی کوئنده اعمال شد و سپس آنالیز مودال عملیاتی بر روی کوئنده اصلاح شده انجام گرفت و بعد از تجزیه و تحلیل داده‌ها، مشخص شد که فرکانس طبیعی کوئنده در مود اول در کوئنده اصلاح شده با جریه ۱۳/۲ هرتز و در کوئنده اصلاح شده با اضافه کردن میله ۱۲۷/۸ هرتز است که خطای کمتر از ۷ درصد را با تابع مدل اجزای محدود نشان می‌دهد. بنابراین، پیمان معنی‌دار شد یا این در روش اصلاح سازه کوئنده دچار یافته رژیون‌های نخواهد شد.

نتایج گیری

یکی از مهم‌ترین قسمت‌های کمیابی واحد کوئنده است که بیشترین تأثیر را روی عملکرد کمیابی دارد بنابراین ارتقاء این قسمت تأثیر بسزایی روی افزایش اتلاف کمیابی دارد. از این رو بررسی علل ارتقاء و یافتن راه حل‌هایی برای کاهش آن، اهمیت ویژه‌ای
جزئ اصلاح سازه به منظور کاهش سطح ارتعاشات
کوینده باعث تحریک کوینده از فرکانس طبیعی آن به اندازه کافی دور باید بنابراین اصلاح سازه به دو روش تغییر جرم و سختی رود مدل اجزای محدود اعمال شد.

در فرایند اصلاح سازه به روش تغییر جرم، چهار جرم توقیف (60 گرمی) در نقاط مختلف سازه اضافه شد و در روش اصلاح سازه به روش تغییر در سختی در قسمت‌های مختلف مدل اجزای محدود میله‌هایی اضافه شد.

با مقایسه هر دو روش اصلاح سازه می‌توان دریافت، فرکانس طبیعی کوینده در مود اول در هر دو روش به اندازه کافی از فرکانس گذار کوینده دور شده است.

منابع

