تأثیر نانو ذرات اکسید آهن عامل‌دار بر میزان جذب روی و برخی شاخص های رشدی گندم در شرایط گلخانه ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه خاکشناسی دانشکده کشاورزی دانشگاه شهید چمران اهواز

2 3- استادیار گروه شیمی دانشکده علوم دانشگاه شهید چمران اهواز

3 استادیار گروه خاکشناسی دانشکده کشاورزی دانشگاه شهید چمران اهواز

4 دانشیار- دانشگاه شهید چمران اهواز- دانشکده کشاورزی- گروه خاکشناسی

چکیده

در میان فناوری‌های نوین، فناوری نانو نقش مهمی در کشاورزی و تولید مواد غذایی دارد. در این راستا، آزمایشی به صورت طرح کامل تصادفی برای بررسی تأثیر نانو ذرات اکسید آهن عامل‌دار بر ویژگی‌های عملکردی و غلظت و جذب و روی گندم انجام شد. تیمارهای آزمایش، شامل نانو ذرات اکسید آهن عامل‌دار (هیدروکسیل OH، کربوکسیل COOH، آمین NH2) هر کدام در سه سطح (100، 200 و 300 میلی‌گرم بر کیلوگرم)، سولفات روی (ZnSO4) (در سطح 40 کیلوگرم در هکتار) و تیمار شاهد بودند. نتایج نشان داد که بیش‌ترین مقدار روی قابل دسترس خاک در تیمار نانو ذرات اکسید آهن کربوکسیل‌دار به مقدار 300 میلی‌گرم در کیلوگرم نسبت به تیمار شاهد به‌دست می‌آید.  بیش‌ترین مقدار عملکرد ریشه و ساقه در تیمار نانو ذرات اکسید آهن هیدروکسیل‌دار به مقدار 300 میلی‌گرم در کیلوگرم به‌دست آمد. نانو ذرات اکسید آهن کربوکسیل‌دار بیش‌ترین تأثیر را بر غلظت و جذب روی در گندم داشتند. بنابراین استفاده از نانو ذرات به مقدار مناسب می‌تواند موجب بهبود وضعیت عناصر غذایی خاک، محصولات و در نهایت انسان شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Functionalized Iron Oxide Nanoparticles on Zinc Uptake and some Growth Indices of Wheat in Greenhouse Conditions

نویسندگان [English]

  • Ali Abdolahi 1
  • Mehdi Taghavi 2
  • Mojtaba Norouzi masir 3
  • Abdolamir Moezzi 4
1 M.Sc, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
2 Assistant Professor, Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Iran
3 Assistant Professor of Soil Science Department, Faculty of Agriculture, Shahid chamran university of Ahvaz, Iran
4 Associate Professor- Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz
چکیده [English]

Nanotechnology has created a range of new applications in different stages of agriculture. The application of Nano-fertilizers for plants is of vital importance because of its unique properties, such as the specific surface and high reactivity. Many studies have investigated the effect of metal nanoparticles on yield and concentration of elements in the plant. The present study was conducted with the aim of investigating the effects of Functionalized Iron Oxide Nanoparticles (FIONPs) on plant yield, concentration and uptake of Zinc in root and shoots of wheat under greenhouse cultivation in a calcareous soil.
Materials and Methods This study was conducted in the greenhouse condition as a randomized complete design with three replications. Treatment consisted of functionalized iron oxide nanoparticles (Hydroxyl: OH, Carboxyl: COOH and Amine: NH2) each at three levels (100, 200 and 300 mg.kg-1), ZnSO4 (40 kg.ha-1) and Control. During the experiment, some parameters such as the plant height and chlorophyll index were measured. At the end of the cultivation period, dry weight and Zn concentration of root, shoot and grain was determined using Atomic absorption apparatus (Perkin elmer A_Analyst 200 model). Likewise, content of soil available Zn was measured using DTPA.
Results The amount of available zinc in all levels of iron oxide nanoparticles, except Amine iron oxide nanoparticles (at levels of 200 and 300 mg / kg), was significantly (p < 0.01) increased compared to control. The maximum amount of soil available Zn were observed in levels of 300, 200 and 100 mg.kg-1 Carboxyl iron oxide nanoparticles with 83.64, 70.91 and 63.64% increment compared to control, respectively. Effect of treatments of functionalized iron oxide nanoparticles and zinc sulfate on chlorophyll content, plant height and dry weight of shoots was significant (p < 0.01). The maximum yield of root and shoot was obtained at the level of 300 mg.kg-1 of Carboxyl iron oxide nanoparticles with 34.74 and 25.1% increment compared to control, respectively. The maximum grain yield was observed at the level of 300 mg.kg-1 of Carboxyl iron oxide nanoparticles with 36.51% increment compared to control. The maximum chlorophyll content was obtained in Carboxyl iron oxide nanoparticles (at level of 300 mg. kg-1) with 11.38% increment compared to control. The maximum of Zinc concentration in root, shoot and grain was observed at the level of 300 mg.kg-1 carboxylic oxide nanoparticles with 103.62, 159.26 and 26.87% increment compared to control, respectively.
Conclusions The results showed that application of FIONPs improved soil pH and subsequently available zinc of soil. Also, nanoparticles increased the yield, concentration and uptake of zinc in root, shoots and grain of wheat. Therefore, based on the obtained results from this study, it can be said that use of new strategies such as nanoparticles can be useful in improving soil conditions and bioavailability of Micronutrient like Zinc and reducing chemical fertilizers.

کلیدواژه‌ها [English]

  • Nanoparticles
  • Iron Oxide Nanoparticles
  • Zinc Concentration
  • Yield
  • wheat
Alloway, B. J. 2004. Zinc in Soils and Crop Nutrition. International Zinc Association, Brussels, Belgium, 128 p.
Alloway, B. J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31, 537–548.
Andreini, C., Bertini, I. and Rosato, A. 2009. Metalloproteomes: a bioinformatics approach. Acc. Chem. Res. 42, 1471–1479.
Askary, M., Talebi, S. M., Amini, F. and Dosusti Balout Bangan, A., 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. BIOLOGIJA. 63 (1): 65-75.
Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., and Clark, F.E. 1965. Methods of soil analysis: Part 2. Agronomy Monogr, ASA, Madison, WI.
Eldin, A. S. 2015. Effect of Magnetite Nanoparticles (Fe3O4) as Nutritive Supplement on Pear Saplings. Sciences, 5(03), 777-785.
Ghafari, H and Razmjoo, J. 2013. Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production. 4 (11): 2997-3003.
Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., ... and Strano, M. S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature materials, 13(4), 400-408.
Gupta PK, 2004. Soil, Plant, Water and Fertilizer Analysis. Agrobios (India), 438 p.
Han, F. X. 2007. Biogeochemistry of trace elements in arid environments (Vol. 13). Springer Science & Business Media.
Havlin JL , Beaton JD, Tisdale SL and Nelson WL 2007. Soil Fertility and Fertilizers, 7th ed. SSSA Madison, WI.
Hotz, C., Brown, K.H., 2004. Assessment of the risk of zinc deficiency in populationsand options for its control. Food Nutr. Bull. 25 (Suppl. 2), S130–S186.
Jackson, R.S., 2008. Wine science. Principles and Applications. Elsevier, London
Jayvanth Kumar, U., Bahadur, V., Prasad, V. M., Mishra, S. and Shukla, P. K., 2017. Effect of Different Concentrations of Iron Oxide and Zinc Oxide Nanoparticles on Growth and Yield of Strawberry (Fragaria x ananassa Duch) cv. Chandler. Int.J.Curr.Microbiol.App.Sci. 6(8): 2440-2445.
La Frano, M.R., de Moura, F.F., Boy, E., Lönnerdal, B., and Burri, B.J., 2014. Bioavailabilityof iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr.Rev. 72, 289–307.
Likar, M., Vogel-Mikus, K., Potisek, M., Hancevic, K., Radic, T., Necemer, M., and Regvar, M. 2015. Importance of soil and vineyard management in the determination of grapevine mineral composition. Sci. Total Environ. 505, 724–731.
Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley and Sons Ltd.
Lindsay, W.L. and Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 43: 421-428.
Liu, X.M., Zhang, F.D., Feng, Z.B., He, X.S., Fang, R., and Feng, Z. 2005. Effects of nano ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr.Fertil.Sci. 11, 551–555.
Maftoun, M., and Karimian, N. 1989. Relative efficiency of two zinc sources for maize (Zea mays L.) in two calcareous soils from an arid area of Iran. Agronomie, 9(8), 771-775.
Maret, W. and Li, Y. 2009. Coordination dynamics of zinc in proteins. Chem. Rev. 109, 4682–4707.
Marschner, H. 1993. Zinc uptake from soils. In Zinc in soils and plants (pp. 59-77). Springer Netherlands.
Marschner, P. 2012. Nutrition of Higher Plants. third ed. Elsevier.
Mazaherinia, S., Astaraei, A. R., Fotovat, A. and Monshi, A. 2010. Nano iron oxide particles efficiency on Fe , Mn , Zn and Cu concentrations in wheat plant. World Applied Sciences Journal 7(1): 36-40.
Moghadam, A., Vattani, H., Baghaei, N., and Keshavarz, N. 2012. Effect of Different Levels of Fertilizer Nano_Iron Chelates on Growth and Yield Characteristics of Two Varieties of Spinach (" Spinacia oleracea" L.): Varamin 88 and Viroflay. Research Journal of Applied Sciences, Engineering and Technology, 4(22), 4813-4818.
Mortvedt, J. J. 1985. Plant uptake of heavy metals in zinc fertilizers made from industrial by-products. J Environ. Qual, 14:424–427.
Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y. and Kumar, D. S. 2010. Nanoparticulate material delivery to plants. Plant science, 179(3): 154-163.
Ojeda-Barrios, D.L., Perea-Portillo, E., Hernández-Rodríguez, O.A., Martínez-Téllez,J., Abadía, J., Lombardini, L. 2014. Foliar fertilization with zinc in pecan trees.HortScience 49, 562–566
Olsen, S.R., and Sommers, L.E. 1982. Phosphorus. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), Pp: 403-430.
Peralta-Videa, J. R., Hernandez-Viezcas, J. A., Zhao, L., Diaz, B. C., Ge, Y., Priester, J. H., Ann Holden, P. and Gardea-Torresdey, J. L. 2014. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry, 80, 128-135.
Rhoades, J.D. 1996. Salinity: electrical conductivity and total dissolved solids. Methods of Soil Analysis. pp: 417-435.
Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., ... and Zhu, S. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in plant science, 7.
Shaheen, S.M., Tsadilas, C.D., and Rinkklebe, J. 2013. A reviewof the distribution coefficients of trace elements in soil: influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interf. Sci. 201–202, 43–56.
Shankramma, K., Yallappa, S., Shivanna, M. B. and Manjanna, J. 2015. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Applied Nanoscience, 6: 983-990.
Sheykhbaglou, R., Sedghi, M., Shishevan, M. T and Sharifi, R. S. 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2 (2): 112-113.
Siddiqui, M. H., Al-Whaibi, M. H., Firoz, M., & Al-Khaishany, M. Y. (2015). Role of nanoparticles in plants. In Nanotechnology and Plant Sciences. pp: 19-35. Springer International Publishing.
Singh, M.K., Prasad, S.K., 2014. Agronomic aspects of zinc biofortification in rice(Oryza sativa L.). Proc. Natl. Acad, Sci. 84: 613–623.
Sousa, S. F., Lopes, A. B., Fernandes, P. A. and Ramos, M. J. 2009. The zinc proteome: a tale of stability and functionality. Dalton Transactions, 7946–7956.
Swietlik, D., 2016. Zinc nutrition in horticultural crops. Hortic. Rev, 23, 109–180.
Teng, Y., Feng, D., Wu, Rui, Z., Song, L., and Wang, J. 2015. Distribution, bioavailability, and potential ecological risk of Cu, Pb, and Zn in soil in a potential groundwater source area. Environ. Monit. Assess, 187, 293.
Wang, Y.X.A., and Oyaizu, H. 2009. Evaluation of the phytoremediation potential of four plant species for dibenzofu-ran-contaminated soil. Journal of Hazardous Materials, 168: 760-764.
Zhu, H., J. Q. Han and Y. Jin. 2008. Uptake, translocation, accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ Monit, 10:713-717.