تغییرپذیری محتوای سزیم-137 در سایت مرجع شهرستان فریدن و ارتباط آن با برخی ویژگی‌های فیزیکوشیمیایی و مغناطیسی خاک

نوع مقاله: کاربردی

نویسندگان

1 دانشجوی سابق خاکشناسی

2 دانشگاه صنعتی اصفهان

چکیده

به‌منظور بررسی تغییرپذیری محتوای سزیم-137 در سایت مرجع شهرستان فریدن و ارتباط آن با برخی ویژگی­های خاک، تعداد 96 نمونه از اعماق 15-0 و 30-15 سانتی­متری و هم‌چنین برای تعیین توزیع عمودی آن، 8 نمونه خاک از دو پروفیل مرجع از اعماق 5-0، 15-5، 25-15 و 35-25 سانتی­متری برداشته شد. دستگاه اسپکترومتری اشعه گاما برای آنالیز سزیم-137 مورد استفاده قرار گرفت. مقادیر پذیرفتاری مغناطیسی در دو فرکانس 46/0 و 6/4 کیلوهرتز به وسیله دستگاه Bartington اندازه­گیری شد. ویژگی­های خاک، شامل نیتروژن کل، ماده­آلی، ظرفیت تبادل کاتیونی، آهک، هدایت الکتریکی، pH، توزیع اندازه ذرات، سنگریزه و چگالی ظاهری در نمونه­ها تعیین شد. سزیم-137 از خود تغییرپذیری نسبتاً کم آشکار کرد. نتایج نشان داد، چگالی ظاهری بیش‌ترین همبستگی مثبت را با سزیم-137 (01/0˂p ،46/0=r) دارد. بین رس و سزیم-137، هم‌بستگی منفی (01/0˂p ،52/0-=r) مشاهده شد. کانی­شناسی رس نشان داد که کانی­های ایلیت، کائولینیت و کلریت در سایت مرجع مورد مطالعه وجود دارند. نتایج تجزیه و تحلیل رگرسیون خطی چندگانه با روش گام به گام نشان داد که چگالی ظاهری، درصد رس و پذیرفتاری مغناطیسی در فرکانس پایین، 43 درصد از کل تغییرپذیری سزیم-137 را در سایت مورد مطالعه توجیه می­کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Cesium-137, Variability, Reference site, Soil properties, Magnetic susceptibility, Fereydan area

نویسندگان [English]

  • Nasim Bazshushtarizadeh 1
  • shamsollah ayoubi 2
2 IUT
چکیده [English]

Introduction 137Cs is an artificial radionuclide with a half-life of 30.2 years and strong gamma radiation that, due to nuclear explosions in the 1950s, and 1960s entered the earth's surface by the rain. The radionuclide has been widely used for the evaluation rates and patterns of soil erosion and deposition. 137Cs was rapidly adsorbed to fine particles of soil surface horizon and its distribution is basically accompanied by the physical processes of soil, such as erosion and tillage. 137Cs is distributed exponentially as a function of depth to a maximum depth ranging from 5 to 15 cm in the undisturbed soil. The basis of calculating of erosion by 137Cs method is based on comparison between the amount of 137Cs in studied soil and the reference site (local, flat, un-eroded, undisturbed and stable site) and 137Cs loss or gain, relative to the reference inventory, indicates soil erosion and deposition, respectively. So, the reliable and accurate reference estimate of 137Cs is essential. No attempt has been made to explore the variability of 137Cs inventory in the reference sites in Iran. Therefore, This study was conducted to evaluate variability of 137Cs inventory and its relationship with some soil properties at the reference site located in Fereydan district in western of Isfahan province.
Materials and Methods 96 soil samples were collected from 0-15 cm and 15-30 cm depths. Moreover, for evaluation of vertical distribution of 137Cs, two profiles were excavated and 8 soil samples were collected from 0-5, 5-15, 15-25 and 25-35 cm depths. Gamma-ray spectrometry device was used for 137Cs analysis. Magnetic susceptibility values were measured using Bartington susceptimeter at low (0.46 kHz) and high (4.6 kHz) frequencies and magnetic susceptibility dependent was calculated by low and high frequency values. Soil properties including total nitrogen, organic material, cation exchange capacity, calcium carbonate equivalent, EC, pH, texture, gravel and bulk density were determined. Descriptive statistics including mean, minimum, maximum, standard deviation (SD), coefficients of variation (CV), skewness, and kurtosis were calculated by SPSS software, v.16. The distribution of variables was evaluated using the Kolmogorov-Smirnov test. Pearson correlation coefficient and regression analysis were used to examine the relationships between 137Cs and soil properties.
Results and Discussion The coefficient of variation of 137Cs inventory were 15.05 and 14.05% in 0-15 cm and 15-30 cm depth respectively. The result indicated that 137Cs has uniformly distributed in studied reference site. The results of the study showed that OM, OM/Clay, CEC/Clay, EC, Sand, BD, χlf and χhf were correlated with 137Cs. The results of multiple regression analysis indicated that bulk density, clay content and magnetic susceptibility at low frequency explained 43% of total variability of 137Cs in the studied reference site.
Conclusions In the present study, variability of 137cs was investigated in a reference site in Ferydan district in Isfahan Province. The study showed that 137Cs had low variability. Among the soil physical and chemical properties, Soil pH, silt, gravel, nitrogen and calcium carbonate equivalent did not show significant correlation with 137Cs. The highest positive significant correlation was obtained for BD and 137Cs. Also, magnetic susceptibility at low and high frequencies showed significant correlations with 137Cs. In the multiple regression analysis, BD, clay content, and magnetic susceptibility were included in the model for explaining the 137Cs variability. It is suggested that similar study be done in the other reference sites in the western Iran. 

کلیدواژه‌ها [English]

  • Cesium-137
  • Variability
  • Reference site
  • Soil properties
  • Fereydan area
  1. Abbaszadeh Afshar, F., Ayoubi, S., and Jalalian, A. 2010. Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran. Journal of Environmental Radioactivity, 101: 606-614.
  2. Ayoubi, S., Ahmadi, M., Abdi, M.R., and Abbaszadeh Afshar, F. 2012. Relationships of 137Cs inventory with magnetic measure of calcareous soils of hilly region in Iran. Journal of Environmental Radioactivity, 112: 45-51.
  3. Bremner, J. M., and Mulvaney, C. S. 1982. Total nitrogen. In: Pages, A. L. (Ed.), Methodes of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed. American Society of Agronomy, Madison, WI, USA. pp: 595-624.
  4. Chappell, A., Hancock, G., Raphael, A., Rossel, V., and Loughran, R. 2011. Spatial        uncertainty of the 137Cs reference inventory for Australian soil. Journal of Geophysical Research,116: 1-15.
  5.  Correchel, V., Bacchi, O. O. S., Reichardt, K., and De Maria, I. C. 2005. Random and systematic spatial variability of 137Cs inventories at reference sites in south-central Brazil. Scientia Agricola, 62(2): 173-178.
  6. Day, R. 1965. Particle fraction and particle size analysis.In: Page, A. L. (Eds.), Methods of Soil Analysis Part 1. pp: 545-566.
  7. Dearing, J. A. 1999. Environmental Magnetic Susceptibility, using the Bartington MS2 System, 2nd ed. Chi Publishing, England.
  8. De Jong, E., Pennock, D. J., and Nestor, P. A. 2000. Magnetic susceptibility of soils in different slope positions in Saskatchewan. Catena, 40(3): 291-305.
  9. Gaspar, L., and Navas, A. 2013. Vertical and lateral distributions of 137Cs in cultivated and uncultivated soils on Mediterranean hillslopes. Geoderma, 207-208: 131-143.
10. ISO 11929-1, 2000. Determination of the Detection Limits and Decision Threshold for Ionising Radiation Measureents-Part 1. Fundamentals and Application to Country Measurements. Int. Organ. Standard., Geneve, Switzerland.
11. Kelishadi, H., Mosaddeghi, M.R., Hajabbasi, M.A., and Ayoubi, S. 2013. Evaluating and Developing Pedotransfer Functions to Predict Soil Saturated Hydraulic Conductivity at Landscape Scale in Central Zagros. Soil Applied Research, 1(2).
  1. 12.  Mabit, L., Bernard, C., Makhlouf, M., and Laverdiere, M. R. 2008. Spatial variability of erosion and soil organic matter content estimated from 137Cs measurements and geostatistics. Geoderma, 145: 245-251.
13. Maher, B. A. 1986. Characterization of soils by mineral magnetic measurements.                               Physics of the Earth and Planetary Interiors,42: 76-92.
14. Mokhtari Karchegani, P., Ayoubi, S., Lu, S. G., and Honarju, N. 2011. Use of magnetic measures to assess soil redistribution following deforestation inhilly region. Journal of Applied Geophysics, 75: 227-236.
15. Mullins, C. E. 1977. Magnetic Susceptibility of the soil and its significance in soil. Science (a review). Journal of Soil Science, 28: 223-246.
16. 16- Navas, A., Walling, D. E., Quine, T., Machín, J., Soto, J., Domenech, S., and López-Vicente, M. 2007. Variability in 137Cs inventories and potential climatic and lithological controls in the central Ebro valley, Spain.Journal of Radioanalytical and Nuclear Chemistry, 274(2): 331–339.
17. Nolin, M. C., Cao, Y. Z., Coote, D. R., and Wang, C. 1993. Short-range variability of fallout 137Cs in an uneroded forest soil. Canadian Journal of Soil Science, 73: 381-385.
18. Nosrati, k., Haddadchi, A., Zare, M. R., and Shirzadi, L. 2014. An evaluation of the role of hillslope components and land use in soil erosion using 137Cs inventory and soil organic carbon stock. Geoderma, 243-244: 29-40.
  1. 19.  Owens, P. N., and Walling, D. E. 1996. Spatial variability of Caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Applied Radiation and Isotopes, 47(7): 699-707.
20. 20- Page, A. L., Miller, R. H., and Keeney, D. R. 1982. Methodes of Soil Analysis Part2: Chemical and Biological Properties, 2nd ed. Soil Science American Journal. Inc. Publisher Lected soil properties. Soil Science Society American Journal, 56: 557-561.
21. 21- Pennock, D.J. 2000. Suitability of 137Cs redistribution as an indicator of soil quality. Acta Geologica Hispanica, 35: 213-217.
22. Quijano, L., Gaspar, L., and Navas, A. 2015. Spatial patterns of SOC, SON, 137Cs and soil properties as affected by redistribution processes in a Mediteranean cultivated field (Central Ebro Basin). Soil Tillage Research,155: 318-328.
23. Rahimi, M. R., and Ayoubi, S. 2013. Impact of land use change and slope positions on some soil properties and magnetic susceptibility in Fereydunshahr district, Isfahan province. Journal of Water and Soil, 27(5): 882-895.
24. Rahimi, M. R., Ayoubi, S., and Abdi, M. R. 2012. Magnetic susceptibility and 137Cs inventory variability as influenced by land use change and slope positions in a hilly region of west-central Iran. Journal of Applied Geophysics, 89: 68-75.
25. Reddy, T. Y., and Reddi, G. H. S. 1992. Principal Agronomy, 1st ed. Kalyani Publishers, Calcutta, India. 190 p.
26.  Royal, D. 2001. Use of mineral magnetic measurement to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena, 46(1): 15-34.
27. Sadiki, A., Faleh, A., and Navas, A. 2007. Using magnetic susceptibility to asssse soil degradation in the Eastern Rif, Morocco. Earth Surface Processes and Landforms, 34: 2057-2069.
28. Singer, M. J., Verousb, K. L., Fine, P., and Tempas, J. 1996. A conceptual Model for the enhancement of Magnetic susceptibility in soils. Quaternary International, 34-36: 243-248.
29. Smith, K. A. 1991. Soil Analysis, 2nd ed, Marced Decker, New York. 659 p.
30. Soto, J., and Navas, A. 2008. A simple model of Cs-137 profile to estimate soil redistribution in cultivated stony soils. Radiation Measurements, 43: 1285-1293.
31. Sutherland, R. A. 1996. Caesium-137 soil sampling and inventory variability in reference samples: A literature survey. Hydrological Processes, 10: 43-53.
32. Wallbrink, P.J., Belyaev, V., Golosov, V. N., Sidorchuk, A. S., and Murray, A. S. 2002. Use of radionuclide field based and erosion modeling method for quantifying rates and amounts of soil erosion processes. CSIRO land and water Consultancy Report.
33. - Walling, D. E., and Quine, T. A. 1993.Use of Cesium-137 as a tracer of erosion and sedimentation: Handbook for the application of Cesium-137 Thechnique. UK Overseas Development Administration Research Scheme R4579, Department of Geography, University of Exeter, United Kingdom.
34. Wang, Y., Zhang, J.H., and Zhang, Z.H. 2015. Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope. Soil Tillage Research, 151: 82-92.