تأثیر برخی عملیات حفاظت خاک بر شاخص‌های کیفیت زیستی خاک در منطقه چهل‌چای استان گلستان

نوع مقاله: کاربردی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 استادیار دانشگاه علوم کشاورزی و منابع طبیعی گرگان

3 استادیار دانشگاه علوم کشاورزی و منابع طبیعی گرکان

چکیده

استان گلستان به دلیل پستی و بلندی، اقلیم متنوع، اراضی لسی و حساسیت این اراضی به فرسایش، نیاز به توجه بیش‌تری در خصوص حفاظت خاک دارد. روش­های مختلف برای افزایش کیفیت خاک پیشنهاد شده­است. مطالعه حاضر با هدف بررسی نقش عملیات­ حفاظتی بر بهبود کیفیت زیستی خاک طراحی شده است. عملیات‌ حفاظتی نهال­کاری، تراس­بندی و باغ‌کاری انتخاب و کیفیت زیستی آن‌ها در مقایسه با اراضی زراعی، مرتعی و جنگلی بررسی شد. نتایج نشان داد که تبدیل اراضی جنگلی و مرتعی به کشاورزی موجب تخریب کیفیت خاک می‌شوند؛ به نحوی که شاخص­های کیفیت خاک، مانند موادآلی تا ۶۰ درصد و پایداری خاکدانه تا۷۰ درصد کاهش نشان می‌دهند. هم‌چنین در این مطالعه شاخص­های زیستی و شاخص­های­ کیفیت زیستی خاک (QBS) و شاخص­های اکومرفولوژیک (EMI) کاهش نشان دادند. در مقابل عملیات حفاظتی باعث بهبود این شاخص­ها شده بود. در شاخص­های زیستی، عملیات نهال­کاری و باغ‌کاری افزایشی حدود ۴۰ درصد در EMI و کربن زی‌توده میکروبی و تا ۸۰ درصد در تنفس میکروبی را موجب شدند و تراس­بندی نسبت به عملیات دیگر بهبودی کم‌تر، در حدود ۱۱ درصد در EMI و تا ۲۰ درصد در کربن زی‌توده میکروبی موجب گردید. در مجموع روند یکسانی برای همه­ی شاخص­ها و عملیات قابل مشاهده نبود. کمی افزایش در برخی شاخص­ها مورد بررسی، مشاهده شد که به آن نظرمی­رسد به دلیل عمر کوتاه عملیات حفاظتی بوده و در آینده نتایج، بهبود بیش‌تر و بهتری را نشان خواهند داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Some Conservation Practices on Soil Biological Quality Indices in The Chehelchai Region, Golestan province

نویسندگان [English]

  • Motahareh Noorzade Roshan 1
  • Reza Ghorbani Nasrabadi 2
چکیده [English]

Introduction Soil quality has been defined as a “The potential of soil to play a positive relationship with the other parts of ecosystem”. Soil biological indicators provide insight into the living component of the soil. Similar to physical and chemical indicators, biological indicators have a relationship to soil functions and can evaluate soil functions to assess soil quality. Between biological indicators, an index that can be measured quickly and easily is more useful to show the changes. In many studies an indicator of microbial respiration, microbial population, nitrogen mineralization and enzymes activity can be used. Special ability is required to measure quickly and show the quality of soil microorganisms and reaction to environmental changes. Soil health is defined by chemical and physical parameters such as soil texture, soil pH, electrical conductivity, etc., that are not quantifiable completely. Therefore, conservation practices planting and forestry may directly or indirectly affect a organism’s activities. The results of land-use systems without consideration of the consequences on soil quality have been environmental degradation. Agricultural management systems have been generally adopted without attending to soil conservation and soil quality, and this therefore causes significant decline in agricultural soil health worldwide. Different methods of soil conservation have been proposed to prevent erosion and improve soil quality destructive phenomena. In Golestan province due to topographical and climatic conditions and less soil sensitivity to erosion, more attention should be given to this issue. But it remains unclear how far this conservation practice can take to prevent damage. This study aimed to investigate the role of conservative practices to improve the soil quality indicators.
Materials and Methods The watershed of Chehelchai is located between North latitudes 36° 59´ and 37° 13´ and Earth longitudes 55° 23´ and 55° 38´. The history of land use in the region shows that more than about 40 years ago, all the study area was covered by forest. Agricultural land use changes occurred on a large scale. With emphasis on conservation operation, parts of the agricultural land were changed to productive gardens, partly forested, partly pasture with native species. Different land uses were selected in loess formations, and slope of 41 %, with life operations was about 6 to 7 years. Protective Operations Garden species, terraces and forestry were selected and quality of soil was compared with agricultural land, pasture and natural forest. In this regard, 10 soil samples were taken. After preparation of the samples, physical, chemical and biological analysis were measured. Additionally, soil properties (pH, Electrical Conductivity, Calcium carbonate, organic matter, texture, bulk density, aggregate stability, microbial respiration, microbial biomass population count of micro- arthropods, biological soil quality) were analyzed. The data were analyzed using software SAS. Ver 9. and the results were compared in a randomized complete block design. Analysis of variance in the form of randomized complete block design was done using the LSD multiple comparison.
Results and Discussion Our results showed that the dominant soil texture class in land uses was silty loam. It seems that soil texture is less affected by the land use changes. The results showed that the changes of forest and pasture to agricultural lands have destroyed the soil quality. Soil quality indicators such as organic matter and aggregate stability have declined by 60 and 70 percent respectively. Like wise, biological indicators such as microbial respiration, microbial biomass carbon and QBS (biological soil quality indicators based on the population of micro- arthropods) and EMI (index dependence of soil to soil organisms) showed a similar trend. In contrast, the Conservation practices improved the indices. Biological indicators in the forestry and gardening showed an increase of 40 percent in EMI Microbial biomass carbon and 80 percent in microbial respiration. Terracing had less improvement than other operations in about 11 to 20 percent in EMI and microbial biomass carbon.
Conclusion Conservation operations had fewer effects on indicators such as aggregate stability and organic matter. Under estimation of effects in certain indicators maybe due to short time of conservation practices. It seems that these operations will show better results in the future Received: 19 July, 2016
Accepted: 10 April, 2018

کلیدواژه‌ها [English]

  • Soil conservation
  • Soil quality
  • Biological Indicators
  • Land use change
  • Golestan province
  1. Arefi Asl, A., Najafi Nejad, A., and Kiani, F. 2010. The effect of map spatial resolution on simulation result of SWAT, case study: Chelchay Watershed, Golestan Province in Iran. Book of abstract 2010 International SWAT Conference, 51 pp.
  2. Bayramin, I.O., Baskan, D., and Parlak. M. 2003. Soil erosion assessment with CONA model: Case study Beypazri area. Turkish Journal of Agriculture, 27: 105-116.
  3. Birkhofer, K., Bezemer, T., and Bloem, A. 2008. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 40: 2297-2308.
  4. Bronson, K. F., Zobeck, T. M., Chua, T. T., Acosta-Martinez, V., Van Pelt, R. S., and Booker, J. D. 2004. Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Science Society of American Journal, 68: 1695-1704.
  5. Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83: 270-277.
  6. Coleman, D. C., Crossley, D. A. J., and Hendrix, P. F. 2004. Fundamentals of Soil Ecology. Academic press. 386 pp.
  7. Ferreras, L. A., Costa, F. O. G., and Pecorari, C. 2000. Effect of no tillage on some soil physical properties of a structural degraded petrocalcic paleudoll of the southern pampa of Argentina. Soil and Tillage Resources, 54: 31-39.
  8. Hessel, R. 2002. Modelling soil erosion in a small catchment on the Chinese Loess Plateau. Applying LISEM to extreme conditions. (Doctoral dissertation), 318p.
  9. Islam, K. R., and Weil, R. R. 1998. Land use effect on soil quality in tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79: 9-16.
    1. Johanna, E. N., and Sina, M. A. 2014. Differences in soil quality indicators between organic and sustainably managed potato fields in Eastern Canada. Ecological Indicators, 37:119-130.
    2. Kiani, F., Jalalian, A., Pashae., A and Khademi, H. 2003. Effects of deforestation on selected soil quality attributes in loessderived land forms of Golestan province, northern Iran. Proceeding of the 4 International Iran and Russian Conference, Shahrekord, PP: 546-550.
    3. Kiani, F., Jalalian, A., Pashaei, A., and Khademi, H. 2007. Effect of Deforestation, Grazing exclusion and Rangeland Degradation on Soil Quality Indices in Loess-Derived Landforms of Golestan Province. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 11(41): 453-464. (in Persian).
    4. Kiss, S. M., Dragan-Bularda, T., and Radulescu, D. 1975. Biological significance of enzymes accumulated in soil. Advances in Agronomy, 27: 25-91.
    5. Mahzari, S., Kiani, F., Azimi. M., and Khormali, F. 2016. Using SWAT model to determine runoff, sediment yield and Nitrate loss in Gorganrood watershed, Iran. Ecopersia, 4(2), 1359-1377.
    6. Marinari, S., Masciandaro, G., Ceccanti, B., and Grego, S. 2000. Influence of organic and mineral fertilizers on soil biological and physical properties.  Bioresource Technology , 72: 9–17.
    7. Marzaioli, R., D’Ascoli, R., De Pascale, R., A and Rutigliano, F. A. 2010. Soil quality in a mediterranean area of southern Italy as related to different land use types. Journal of Applied Soil Ecology, 44: 205-212.
    8. Miralles, I., Domingo, F., and García-Campos, E. 2012. Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biology and Biochemistry, 55:113- 121.
    9. Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E., and Mcgilvaray, H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Journal of Global Change Biology, 8: 105-123.
    10. Najafi, G. 2005. Water and agriculture. Dehati, Monthly Agric , 28: 8-14.(in Persian).
    11. Nnues, J. S., Arayjo, A. S. F., Nunes, L. A. P., L., Lima, L. M., Carneiro, R. F. V., Salviano, A. A. C. S., and Tasi, T. S. M. 2012, Impact of land degradation on soil Microbial biomass and activity in northeast brazil. Pedosphere, 22(1): 88–95.
    12. Noellemeyer, E., Quiroga, A. R., and Estelrich, D. 2006. Soil quality in three range soils of the semi-arid Pampa of Argentina. Journal of Arid Environments, 65: 142–155.
    13. Page, M. C., Sparks, D. L., Noll, M. R., and Hendricks, G. J. 1987. Kinetics and mechanisms of potassium release from sandy middle Atlantic coastal plain soils. Soil Science Society of America Journal, 51: 1460-1465.
    14. Papendick, R. I., and Parr, J. 1992. Soil quality-the key to a sustainable agriculture.  American Journal of Alternative Agriculture, 7(1-2), 2-3.
    15. Parisi V., 2001. La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Naturalia de"L’Ateneo Parmense.37: 97-106.
    16. Pathak, P., Sahrawat, K. L., Rego, T. J., and Wani, S. P. 2004. Measurable biophysical indicators for impact assessment: chenges in soil quality, ICRISAT, 53-73.
    17. Refahi, H.Gh. (2006). Water erosion and conservation. University of Tehran. 22(5), 671. (in Persian).
    18. Seastedt, T.R. 1984. The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29: 25-46.
    19. Sharma, K. L., Uttam Kumar Mandal Srinivas, K., Vittal, K. P. R., Biswapati Mandal, Kusuma Grace, J., and Ramesh, V. 2004. Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil and Tillage Research, 83(2): 246-259.
    20. Smith, J. L., and Doran, J.  W. 1996.” Measurement and use of pH and electrical conductivity for soil quality, pp.169-182, Soil Sci. Soc. Am. Special Publication, No. 49, Madison, Wisconsin, USA. Bangkok, Thailand: International Board for soil research and management. Technical papers 2:175-203.
    21. Topp, G. C., Reynolds, W. D., Cook, F. J., Kirby, J. M.,  and Carter, M. R. 1997. Physical attributes of soil quality. Developments in Soil Science, 25, 21-58.
    22. Vagen, T.G., Andrianorofanomezana, M.A.A. and Andrianorofanomezana, S. 2006. Deforestation and cultivation effects on characteristics of Oxisols in the highlands of Madagascar. Geoderma, 131: 190-200.
    23. Wardle, D. A. 2002. Communities and ecosystem: linking the aboveground and belowground components. Princeton University press.
    24. Winter, J. P & Behan-pelletier, V. M. 2007. Microarthropods. In M. R. Carter, & E. G. Gregorich (Eds), Soil Sampling and Methods of Analysis, Second Edition. CRC Press.