تخمین پایداری خاکدانه با استفاده از خصوصیات خاک در کاربری‌های مختلف اراضی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیئت علمی، گروه مهندسی علوم خاک، دانشگاه زابل، ایران

2 هیئت علمی، گروه مهندسی علوم خاک، دانشگاه زابل ، ایران

3 دانشجوی کارشناسی ارشد، گروه مهندسی علوم خاک، دانشگاه زابل ، ایران

چکیده

یک مطالعه مقایسه­ای با هدف بررسی کارایی شبکه عصبی مصنوعی (ANN) و رگرسیون خطی چندمتغیره (MLR) برای پیش­بینی پایداری خاکدانه­های بزرگتر از 25/0 میلی­متر در روش الک تر(250SAW>) در کاربری­های مختلف منطقه میانکنگی سیستان انجام شد. بدین منظور تعداد 140 نمونه خاک از اراضی کشاورزی، مرتعی و بایر منطقه تهیه و برخی ویژگی­های خاک از جمله بافت، ماده آلی، کربنات کلسیم، سدیم تبادلی، کلسیم و منیزیم محلول، اسیدیته، هدایت الکتریکی و  شاخص پایداری خاکدانه در آن­ها اندازه­گیری شد. در مناطق بایر و مرتعی میزان کلسیم و منیزیم محلول و در زمین­های زیر کشت مقدار سدیم تبادلی بیشترین همبستگی خطی را با پایداری خاکدانه نشان دادند و مدل­های رگرسیونی توسعه­یافته توانستند 56-49 درصد از تغییرات SAW را در کاربری­های مختلف منطقه توجیه نمایند. در شبکه عصبی پرسپترون به کار گرفته شده  متغیر اسمی نوع کاربری همزمان با سایر ورودی­ها وارد مدل گردید که این مدل توانست نزدیک به 90 درصد تغییرات شاخص پایداری را در مجموعه آزمون پیش­بینی کند. نتایج کمی کردن اهمیت متغیرها به روش ارتباط وزنی در روش شبکه عصبی نشان داد که عامل نوع کاربری و نوع و مقدار کاتیون­های فاز تبادلی و محلول خاک بیشترین سهم را در تغییرپذیری شاخص پایداری خاکدانه در منطقه مورد مطالعه دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Aggregate Stability using Soil Properties in Different Land Use

نویسندگان [English]

  • A Shabani 1
  • A Gholamalizadeh Ahangar 2
  • S Golshahi 3
  1. Barthes, B.G., Kouoa Kouoa, E., Larre-Larrouy, M.C., Razafimbelo, T.M., de Luca, E.F., Azontonde, A., Neves, C.S., de Freitas, P.L., and Feller, C.L. 2008. Texture and sesquioxide effects on water stable aggregates and organic matter in some tropical soils. Geoderma, 143: 14-25.
  2. Barzegar, A.R., Nelson, P.N., Oades, J.M., and Rengasamy, P. 1997. Organic matter, sodicity, and clay type influence on soil aggregation. Soil Science Society of America Journal, 61: 1131-1137.
  3. Besalatpour, A.A., Ayoubi, S., Hajabbasi, M.A., Mosaddeghi, M.R., and Schulin, R. 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111: 72-79.
  4. Bocco, M., Willington, E., and Arias, M. 2010. Comparison of regression and neural networks models to estimate solar radiation. Chilean Journal of Agricultural Research, 70: 428-435.
  5. Boix-Fayos, C., Calvo-Cases, A., and Imeson, A.C. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena, 44: 47-67.
  6. Boujila, A., and Gallai, T. 2008. Soil organic carbon fraction and aggregate stability in carbonated and no carbonated soils in Tunisia. Agronomy Journal, 7: 127-137.
  7. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 56: 464-466.
  8. Calero, N., Barron, V., and Torrent, J. 2008. Water dispersible clay in calcareous soils of southwestern Spain. Catena, 74: 22-30.
  9. Canasveras, J.C., Barron, V., Del Campillo, M.C., Torrent, J., and Gomez, J.A. 2010. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy. Geoderma, 158: 78-84.
  10. Chapman, H.D. 1965. Cation exchange capacity. In Black, C.A (ed.), Methods of soil analysis. Part 2. ASA, Monograph, No. 9. Madison (WI): ASA.
  11. Dia, X., Huo, Z., and Wang, H. 2011. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121:441-449.
  12. Etminan, S., Kiani, F., Khormali, F., and Habashi, H. 2011. Effect of soil properties with different parent materials on aggregate stability: in Shastkola watershed, Golestan province. Journal of Soil Management and Sustainable Production, 1(2): 39-60 (In Persian).
  13. Ghorbani, Z., Jafari, S., and Khalil Moghaddam, B. 2013. The effect of soil physicochemical properties under different land use on aggregate stability in some part of Khuzestan province. Journal of Soil Management and Sustainable Production, 3(2): 29-51 (In Persian).
  14. Hattab, N., Hambli, R., Motelica-Heino, M., Bourrat, X., and Mench, M. 2013. Application of neural network model for the prediction of chromium concentration in phytoremediated contaminated soils. Journal of Geochemical Exploration, 128: 25-34.
  15. Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 850 p.
  16. Holland, J.M. 2004. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems and Environment, 103:1-25.
  17. Karimi, H., Soufi, M., Haghnia, G., and Khorasani, R. 2008. Investigation of aggregate stability and soil erosion potential in some loamy and sandy clay loam soils: case study in Lamerd watershed (south of Fars province). Journal of Agricultural Sciences and Natural Resources, 14(6): 348-356 (In Persian).
  18. Kemp, S.J., Zaradic, P., and Hansen, F. 2007. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecological Modelling, 204: 326-334.
  19. Kemper, W.D., and Rosenau, R.C. 1986. Aggregate Stability and Size Distribution. In Klute, A. (ed.), Methods of soil analysis. Part1. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  20. Keshavarzi, A., Sarmadian, F., Sadeghnejad, M., and Pezeshki, P. 2010. Developing pedotransfer functions for estimating some soil properties using artificial neural network and multivariate regression approaches. The ProEnvironment Journal, 3: 322-330.
  21. Khazaei, A., Mosaddeghi, M.R., and Mahboubi, A.A. 2008. Test conditions, and soil organic matter, clay and calcium carbonate contents’ impacts on mean weight diameter and tensile strength of aggregates from some Hamadan soils. Journal of Agricultural and Natural Resource Sciences and Technology, 44: 123-135 (In Persian).
  22. Lal, R., Reicosky, D.C., and Hanson, J.D. 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil and Tillage Research, 93:1-12.
  23. Le Bissonnais, Y. 1996. Aggregate stability and measurement of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47: 425-435.
  24. Mahmoodabadi, M., and Ahmadbeygi, B. 2013. Effect of primary particle size distribution on aggregate stability at different size classes. Journal of Water and Soil Science, 23(3): 207-219 (In Persian).
  25. Neaman, A., and Singer, A. 2011. The effects of palygorskite on chemical and physico-chemical properties of soils: a review. Geoderma, 123(3), 297-303.
  26. Nelson, R.E. 1982. Carbonate and gypsum. In Page, A.L. (ed.), Methods of soil analysis. Part 1. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  27. Nelson, P.N., Baldock, J.A., Clarke, P., Oades, J.M., and Charchman, G.J. 1999. Dispered clay and organic matter in soil: their nature and association. Australian Journal of Soil Research, 37: 289-315.
  28. Nikpur, M., Mahboubi, A.A., Mosaddeghi, M.R., and Safadoust, A. 2012. Assessment of soil intrinsic properties effects on soil structural stability of some soils in Hamadan province. Journal of Agricultural and Natural Resource Sciences and Technology, 15(58): 85-96 (In Persian).
  29. Olden, J.D., and Jackson, D.A. 2002. Illuminating the black box approach for understanding variable contributions in artificial neural networks randomization. Ecological Modelling, 154: 135-150.
  30. Olden, J.D., Joy, M.K., and Death, R.G. 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178: 389-397.
  31. Opara, C.C. 2009. Soil micro aggregates stability under different land use types in southeastern Nigeria. Catena, 79: 103-112.
  32. Osuji, G.E., and Onweremadu, E.U. 2007. Structural stability of Dystric Nitisol in relation to some edaphic properties under selected land uses. Natural Science, 5: 11-17.
  33. Page, A.L., Miller, R.H., and Keeney, D.R. 1982. Methods of soil analysis. Part 2. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  34. Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In Page, A.L. (ed.), Methods of soil analysis. Part 2. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  35. Rousta, M.J., Golchin, A., and Siadat, H. 2001. Study the effect of organic matter and calcium compounds on aggregate size distribution and water dispersible clay content in a sodic soil. Journal of Water and Soil, 15(2): 242-260 (In Persian).
  36. Rousta, M.J., Golchin, A., Siadat, H., and Saleh Rastin, N. 2002. Effect of organic matter and mineral compounds on some chemical properties and biological activity of a sodic soil. Iranian Journal of Soil and Waters Sciences, 16(1): 33-46.
  37. Rowell, D.l. 1994. Soil Science: Methods and Application. Longman Group, Harlow, England, 345p.
  38. Shrestha, B.M., Singh, B.R., Sitaula, B.K., Lal, R., and Bajracharya, R.M. 2007. Soil aggregate- and particle-associated organic carbon under different land uses in Nepal. Soil Science Society of America Journal, 71: 1194-1203.
  39. Six, J., Conant, R., Paul, E., and Paustian, K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241: 155-176.
  40. Six, J., Elliotte, E., and Paustian, K. 2000. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64: 1042-1049.
  41. Su, Y., Zhao, H., Zhang, T., and Zhao, X. 2004. Soil properties following cultivation and non-grazing of a semi arid sandy grassland in northern China. Soil and Tillage Research, 75: 27-36.
  42. Tajik, F., Rahimi, H., and Pazira, E. 2003. Effects of electrical conductivity and sodium adsorption ration of water on aggregate stability in soils with different organic matter content. Journal of Agricultural Science and Technology, 5: 67-75.
  43. Tang, L., Zeng, G.M., Nourbakhsh, F., and Shen, G.L. 2009. Artificial neural network approach for predicting cation exchange capacity in soil based on physico-chemical properties. Environmental Engineering Science, 26(2): 1-10.
  44. Tayel, M.Y., Abdel-Hady, M., and Eldardiry, E.I. 2010. Soil structure affected by some soil characteristics. American-Eurasian Journal of Agricultural and Environmental Science, 7(6): 705-712.
  45. Tedeschi, A., and Dell’Aquila, R. 2005. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agricultural Water Management, 77: 308-322.
  46. Wagner, B., Tarnawski, V.R., Hennings, V., Muller, U., Wessolek, G., and Plagge, R. 2001. Evaluation of pedotransfer function for unsaturated soil hydraulic conductivity using an independent data set. Geoderma, 102:275-297.
  47. Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
  48. Yoder, R.E. 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agronomy Journal, 28: 337-351.
  49. Zaraei, W., and Sheklabadi, M. 2015. Soil quality assessment in different land uses using multivariate statistical analysis. Journal of Agricultural and Natural Resource Sciences and Technology, 18(70): 101-111 (In Persian).