ارزیابی توابع انتقالی به منظور برآورد درصد سدیم تبادلی در خاک های دشت سیستان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموحته کارشناسی ارشد، گروه مهندسی علوم خاک، دانشگاه زابل

2 دانشیار گروه مهندسی علوم خاک، دانشگاه زابل

3 مربی گروه مهندسی علوم خاک، دانشگاه زابل

چکیده

شناخت تغییرات درصد سدیم تبادلی (ESP) و اطلاع از مقدار آن در خاک­های سدیمی یا شور و سدیمی جهت برآورد مقدار مواد اصلاح‌کننده و مدیریت اراضی، امری ضروری است. اندازه­گیری این ویژگی به دلیل اینکه اندازه­گیری ظرفیت تبادل کاتیونی (CEC) مشکل و زمان­بر است، پر هزینه و همراه با خطا می­باشد. از این رو ارائه روشی که بتوان با استفاده از شاخص سهل­الوصول دیگری بطور غیر­مستقیم ESP را بدست آورد بسیار بهینه و اقتصادی است. در تحقیق حاضر بدین منظور تعداد 296 نمونه خاک از سطح دشت سیستان جمع­آوری و ویژگی­های فیزیکی و شیمیایی آنها اندازه­گیری شد. ESP خاک، با استفاده از شبکه‌های عصبی مصنوعی (RBF و MLP) و سیستم نروفازی (ANFIS) مدل­سازی و نتایج حاصله با روش­ رگرسیون خطی چند متغیره مقایسه گردید. نتایج بیانگر عملکرد ضعیف (50/0R2 ≤  و 34/4RMSE ≥ ) معادلات رگرسیون خطی در راستای برآورد ESP  بود. با این حال، سیستم ANFIS با تعداد ورودی­های کمتر ( ECوpH ) نتایج بهتری را نسبت به سایر روش‌های بکارگرفته شده ارائه داد (34/2RMSE=  و81/0  R2=) و با افزودن تعداد ورودی­ها از دقت سیستم نروفازی کاسته شد (2/4RMSE=  و71/0 R2=). در صورتی­که، شبکه عصبی RBF با افزایش تعداد ورودی­ها عملکردی مطلوب (85/2RMSE= و 80/0 R2=) نشان داد. نتایج آنالیز حساسیت نیز با استفاده از روش ارتباط وزنی، به ترتیب نشان دهنده اهمیت بیشتر هدایت الکتریکی، اسیدیته، درصد ذرات رس و جرم مخصوص ظاهری در توجیه تغییرپذیری ESP منطقه بود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating Pedotransfer Functions for Estimating ESP in the Soils of Sistan Plain

نویسندگان [English]

  • M. Hashemi 1
  • A. Gholamalizadeh Ahangar 2
  • A. Shabani 3
  1. Agyare, W.A., and Park, S.J. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone Journal, 6:423-431.
  2. Amutha, R., and Porchelvan, P. 2011. Seasonal Prediction of Groudwater levels using ANFIS and Radial Basis Neural Network. International Journal of Geology, Earth and Environmental Sciences, 1: 98-108.
  3. Araghinejad, Sh. 2013. Data-driven modelling: using MATLAB in water resources and environmental engineering (Water Science and Technology Library), Springer, 400 p.
  4. Barzegar, A. 2001. Saline and Sodic Soils: Productivity and Efficiency. Shahid Chamran University Press, 273p (In Persian)
  5. Bhargava, G.P., and Abrol, I.P. 1978. Characteristics of some typical salt affected soils of Uttar Pradesh. Division of Soils and Agronomy, Central Soil Salinity Research Institute.
  6. Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 56: 464-466.
  7. Bower, C.A., Reitemeier, R.F., and Fireman, M. 1952. Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-261.
  8. Chapman, H.D. 1965. Cation exchange capacity. In Black, C.A (ed.), Methods of soil analysis. Part 2. ASA, Monograph, No. 9. Madison (WI): ASA.
  9. Dahiya I.S., Richter J., and Malik R.S. 1984. Soil spatial variability: A review. International Journal of Tropical Agriculture, 11:1-102.
  10. Dia X., Huo Z., and Wang H. 2011. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crops Research, 121: 441-449.
  11. Erzin, Y., and Güneş, N. 2011. The prediction of swell percent and swell pressure by using neural networks. Mathematical and Computational Applications, 16: 425-436.
  12. Farahmand, A., Oustan, S.H., Jafarzadeh, A.J., and Asgarzad, A.N. 2011. The parameters of sodium and salinity in some salt affected soils of the Tabriz Plain. Journal of Soil and Water, 22: 1-15 (In Persian).
  13. Fireman, M., and Wadleigh, C.H. 1951. A statistical study of the relation between pH and the exchangeable-sodium-percentage of western soils. Soil Science, 71(4): 273-286.
  14. Food and Agriculture Organization of the United Nations (2008). Land Resources, Management, Planning and Use. http://www.fao.org/ag/agl/agll/spush (accessed April 2015).
  15. Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 850 p.
  16. Jang, J.S.R. 1993. ANFIS-Adaptive-network-based fuzzy inference system. IEEE Transactions System Man Cybernetics, 23: 665-658.
  17. Jurinak, J.J., Amrhein, C., and Wagenet, R.J. 1984. Sodic hazard: The effect of SAR and salinity in soils and overburden materials. Soil Science, 137: 152 -158.
  18. Karami, A., and Afiuni-zadeh, S. 2012. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system and radial basis function. International Journal of Mining Science and Technology, 22: 459–463.
  19. Kemp, S., Zaradic, P., and Hansen, F. 2007. An approach for determining relative input parameter importance and significance in artificial neural networks. Ecological Modelling, 204: 326-334.
  20. Keshavarzi, A., Sarmadian, F., Sadeghnejad, M., and Pezeshki, P. 2010. Developing pedotransfer functions for estimating some soil properties using artificial neural network and multivariate regression approaches. Proenvironment Promediu, 3: 322-330.
  21. Kumar M., Raghuwanshi N.S., Singh R., Wallender W.W., and Pruitt W.O. 2002. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering-ASCE, 128: 224-233.
  22. Mashrei, M.A., Abdulrazzaq, N., Abdalla, T.Y., and Rahman, M.S., 2010. Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members. Engineering Structures, 32: 1723-1734.
  23. Minasny, B., Hopman, J., Harter, W.T., Eching, S.O., Toli, A., and Denton, M.A. 2004. Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Science Society of America Journal, 68: 417-429.
  24. Mohamadi, J., and Tahri, S.M. 2005. Fitting the pedotransfer functions by using the fuzzy regression. Science and Technology of Agriculture and Natural Resources, 2: 51-60 (In Persian).
  25. Nelson, R.E. 1982. Carbonate and gypsum. In Page, A.L. (ed.), Methods of soil analysis. Part 1. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  26. Noori, R., Hoshyaripour, G., Ashrafi, K., and Najdar Araabi, B. 2009. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44: 476-482.
  27. Olden, J.D., Joy, M.K., and Death, R.G. 2004. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178: 389-397.
  28. Olden, J.D., and Jackson, D.A. 2002. Illuminating the black box approach for understanding variable contributions in artificial neural networks randomization. Ecological Modelling, 154: 135-150.
  29. Rhoades, J.D. 1982. Cation exchange capacity. In Page, A.L. (ed.), Methods of soil analysis. Part 2. 2nd ed. ASA, Monograph, No. 9. Madison (WI): ASA.
  30. Rhoades, J.D. 1968. Mineral weathering correction for estimating the sodium hazard of irrigation waters. Soil Science Society of America Proceedings, 32: 648-652.
  31. Riahi Modvar, H.R., and Ayyoubzadeh, S.A. 2008. Estimating longitudinal dispersion coefficient of pollutants using adaptive neuro-fuzzy inference system. Journal of Water and Wastewater, 67: 34-47 (in Persian).
  32. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. In USDA Handbook 60. U.S. Department of Agriculture, Washington, DC.
  33. Ross, T.J. 1995. Fuzzy Logic with Engineering Application. McGraw Hill Inc. USA. 585 p.
  34. Rowell, D.l. 1994. Soil Science: Methods and Application. Longman Group, Harlow, England, 345p.
  35. Sadrmomtazi, A., Sobhani, J., and Mirgozar, M.A. 2013. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Journal of Construction and Building Materials, 42: 205-216.
  36. Singh, P. and Deo, M.C. 2007. Suitability of different neural networks in daily flow forecasting. Applied Soft Computing, 7: 968-978.
  37. USDA-NRCS. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations.  Report, No. 42.Version 3.0. Nebraska.
  38. Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Science, 37: 29-38.
  39. Wang, Y.G., Xiao, D.N., Li,Y., and Li, X.Y. 2008. Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang province. China Environmental Monitoring and Assessment, 140: 291-302.
  40. Wiegand, C.L., Lyles, L., and Carter, D.L. 1966. Interspersed salt-affected and unaffected dryland soils of the lower Rio Grande Valley: II. Occurrence of salinity in relation to infiltration rates and profile characteristics. Soil Science Society of America Journal, 30(1): 106-110.
  41. Yilmaz, I., and Kaynar, O. 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38: 5958-5966.